Reinforcement of Local Pattern Cases for Playing Tetris
نویسندگان
چکیده
In the paper, we investigate the use of reinforcement learning in CBR for estimating and managing a legacy case base for playing the game of Tetris. Each case corresponds to a local pattern describing the relative height of a subset of columns where pieces could be placed. We evaluate these patterns through reinforcement learning to determine if significant performance improvement can be observed. For estimating the values of the patterns, we compare Q-learning with a simpler temporal difference formulation. Our results indicate that training without discounting provides slightly better results than other evaluation schemes. We also explore how the reinforcement values of the patterns can help reduce the size of the case base. We report on experiments we conducted for forgetting cases. .
منابع مشابه
Learning to play Tetris applying reinforcement learning methods
In this paper the application of reinforcement learning to Tetris is investigated, particulary the idea of temporal difference learning is applied to estimate the state value function V . For two predefined reward functions Tetris agents have been trained by using a -greedy policy. In the numerical experiments it can be observed that the trained agents can outperform fixed policy agents signifi...
متن کاملPlaying Tetris with Deep Reinforcement Learning
We used deep reinforcement learning to train an AI to play tetris using an approach similar to [7]. We use a convolutional neural network to estimate a Q function that describes the best action to take at each game state. This approach failed to converge when directly applied to predicting individual actions with no help from heuristics. However, we implemented many features that improved conve...
متن کاملNotes Improvements on Learning Tetris with Cross-entropy
For playing the game of Tetris well, training a controller by the cross-entropy method seems to be a viable way (Szita and Lőrincz, 2006; Thiery and Scherrer, 2009). We consider this method to tune an evaluation-based one-piece controller as suggested by Szita and Lőrincz and we introduce some improvements. In this context, we discuss the influence of the noise, and we perform experiments with ...
متن کاملImprovements on Learning Tetris with Cross Entropy
For playing the game of Tetris well, training a controller by the cross-entropy method seems to be a viable way (Szita and Lőrincz, 2006; Thiery and Scherrer, 2009). We consider this method to tune an evaluation-based one-piece controller as suggested by Szita and Lőrincz and we introduce some improvements. In this context, we discuss the influence of the noise, and we perform experiments with ...
متن کاملApplying reinforcement learning to Tetris
This paper investigates the possible application of reinforcement learning to Tetris. The author investigates the background of Tetris, and qualifies it in a mathematical context. The author discusses reinforcement learning, and considers historically successful applications of it. Finally the author discusses considerations surrounding implementation.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008