Circulant Hadamard Matrices
نویسنده
چکیده
Note. The determinant of a circulant matrix is an example of a group determinant, where the group is the cyclic group of order n. In 1880 Dedekind suggested generalizing the case of circulants (and more generally group de terminants for abelian groups) to arbitrary groups. It was this suggestion that led Frobenius to the creation group of representation theory. See [1] and the references therein.
منابع مشابه
Hadamard ideals and Hadamard matrices with two circulant cores
We apply Computational Algebra methods to the construction of Hadamard matrices with two circulant cores, given by Fletcher, Gysin and Seberry. We introduce the concept of Hadamard ideal for this construction to systematize the application of Computational Algebra methods. Our approach yields an exhaustive search construction of Hadamard matrices with two circulant cores for this construction f...
متن کاملWeaknesses in Hadamard Based Symmetric Key Encryption Schemes
In this paper security aspects of the existing symmetric key encryption schemes based on Hadamard matrices are examined. Hadamard matrices itself have symmetries like one circulant core or two circulant core. Here, we are exploiting the inherent symmetries of Hadamard matrices and are able to perform attacks on these encryption schemes. It is found that entire key can be obtained by observing t...
متن کاملA Note on the Circulant Hadamard Conjecture
This note reports work in progress in connection with Ryser’s conjecture on circulant Hadamard matrices.
متن کاملHadamard ideals and Hadamard matrices with circulant core
Computational Algebra methods have been used successfully in various problems in many fields of Mathematics. Computational Algebra encompasses a set of powerful algorithms for studying ideals in polynomial rings and solving systems of nonlinear polynomial equations efficiently. The theory of Gröbner bases is a cornerstone of Computational Algebra, since it provides us with a constructive way of...
متن کاملSmall circulant complex Hadamard matrices of Butson type
We study the circulant complex Hadamard matrices of order n whose entries are l-th roots of unity. For n = l prime we prove that the only such matrix, up to equivalence, is the Fourier matrix, while for n = p+ q, l = pq with p, q distinct primes there is no such matrix. We then provide a list of equivalence classes of such matrices, for small values of n, l.
متن کاملNew Duality Operator for Complex Circulant Matrices and a Conjecture of Ryser
We associate to any given circulant complex matrix C another one E(C) such that E(E(C)) = C∗ the transpose conjugate of C. All circulant Hadamard matrices of order 4 satisfy a condition C4 on their eigenvalues, namely, the absolute value of the sum of all eigenvalues is bounded above by 4. We prove by a “descent” that uses our operator E that the only circulant Hadamard matrices of order n > 4,...
متن کامل