Role of NHE isoforms in mediating bicarbonate reabsorption along the nephron.

نویسندگان

  • T Wang
  • M Hropot
  • P S Aronson
  • G Giebisch
چکیده

This study assessed the functional role of Na(+)/H(+) exchanger (NHE) isoforms NHE3 and NHE2 in the proximal tubule, loop of Henle, and distal convoluted tubule of the rat kidney by comparing sensitivity of transport to inhibition by Hoe-694 (an agent known to inhibit NHE2 but not NHE3) and S-3226 (an agent with much higher affinity for NHE3 than NHE2). Rates of transport of fluid (J(v)) and HCO(3)(-) (J(HCO3)) were studied by in situ microperfusion. In the proximal tubule, addition of ethylisopropylamiloride or S-3226 significantly reduced J(v) and J(HCO3), but addition of Hoe-694 caused no significant inhibition. In the loop of Henle, J(HCO3) was also inhibited by S-3226 and not by Hoe-694, although much higher concentrations of S-3226 were required than what was necessary to inhibit transport in the proximal tubule. In contrast, in the distal convoluted tubule, J(HCO3) was inhibited by Hoe-694 but not by S-3226. These results are consistent with the conclusion that NHE2 rather than NHE3 is the predominant isoform responsible for apical membrane Na(+)/H(+) exchange in the distal convoluted tubule, whereas NHE3 is the predominant apical isoform in the proximal tubule and possibly also in the loop of Henle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Endogenous flow-induced superoxide stimulates Na/H exchange activity via PKC in thick ascending limbs.

Luminal flow stimulates Na reabsorption along the nephron and activates protein kinase C (PKC) which enhances endogenous superoxide (O(2) (-)) production by thick ascending limbs (TALs). Exogenously-added O(2) (-) augments TAL Na reabsorption, a process also dependent on PKC. Luminal Na/H exchange (NHE) mediates NaHCO₃reabsorption. However, whether flow-stimulated, endogenously-produced O(2) (-...

متن کامل

Mechanism of proximal tubule bicarbonate absorption in NHE3 null mice.

NHE3 is the predominant isoform responsible for apical membrane Na+/H+exchange in the proximal tubule. Deletion of NHE3 by gene targeting results in an NHE3-/-mouse with greatly reduced proximal tubule[Formula: see text] absorption compared with NHE3+/+ animals (P. J. Schultheis, L. L. Clarke, P. Meneton, M. L. Miller, M. Soleimani, L. R. Gawenis, T. M. Riddle, J. J. Duffy, T. Doetschman, T. Wa...

متن کامل

Insulin Resistance, Obesity, Hypertension, and Renal Sodium Transport

Sodium transport through various nephron segments is quite important in regulating sodium reabsorption and blood pressure. Among several regulators of this process, insulin acts on almost all the nephron segments and is a strong enhancer of sodium reabsorption. Sodium-proton exchanger type 3 (NHE3) is a main regulator of sodium reabsorption in the luminal side of proximal tubule. In the basolat...

متن کامل

The importance of the thick ascending limb of Henle’s loop in renal physiology and pathophysiology

The thick ascending limb (TAL) of Henle's loop is a crucial segment for many tasks of the nephron. Indeed, the TAL is not only a mainstay for reabsorption of sodium (Na+), potassium (K+), and divalent cations such as calcium (Ca2+) and magnesium (Mg2+) from the luminal fluid, but also has an important role in urine concentration, overall acid-base homeostasis, and ammonia cycle. Transcellular N...

متن کامل

Bicarbonate reabsorption in the dog with experimental renal disease.

Renal bicarbonate reabsorption (expressed per unit of glomerular filtration rate, GFR) has been reported to be diminished in uremic man and uremic rats. Both the increases in parathyroid hormone concentrations and in natriuretic forces have been considered to play a role in this change. The increased kaliuresis per nephron observed in chronic uremia could theoretically also contribute to inhibi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 281 6  شماره 

صفحات  -

تاریخ انتشار 2001