Graphical condensation of plane graphs: A combinatorial approach

نویسندگان

  • Weigen Yan
  • Yeong-Nan Yeh
  • Fuji Zhang
چکیده

The method of graphical vertex-condensation for enumerating perfect matchings of plane bipartite graph was found by Propp (Theoret. Comput. Sci. 303(2003), 267-301), and was generalized by Kuo (Theoret. Comput. Sci. 319 (2004), 29-57) and Yan and Zhang (J. Combin. Theory Ser. A, 110(2005), 113125). In this paper, by a purely combinatorial method some explicit identities on graphical vertex-condensation for enumerating perfect matchings of plane graphs (which do not need to be bipartite) are obtained. As applications of our results, some results on graphical edge-condensation for enumerating perfect matchings are proved, and we count the sum of weights of perfect matchings of weighted Aztec diamond.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graphical Condensation Generalizations Involving Pfaffians and Determinants

Graphical condensation is a technique used to prove combinatorial identities among numbers of perfect matchings of plane graphs. Propp and Kuo first applied this technique to prove identities for bipartite graphs. Yan, Yeh, and Zhang later applied graphical condensation to nonbipartite graphs to prove more complex identities. Here we generalize some of the identities of Yan, Yeh, and Zhang. We ...

متن کامل

Replacing Pfaffians and applications

We present some Pfaffian identities, which are completely different from the Plücker relations. As consequences we obtain a quadratic identity for the number of perfect matchings of plane graphs, which has a simpler form than the formula by Yan et al (Graphical condensation of plane graphs: a combinatorial approach, Theoret. Comput. Sci., to appear), and we also obtain some new determinant iden...

متن کامل

Applications of graphical condensation for enumerating matchings and tilings

A technique called graphical condensation is used to prove various combinatorial identities among numbers of (perfect) matchings of planar bipartite graphs and tilings of regions. Graphical condensation involves superimposing matchings of a graph onto matchings of a smaller subgraph, and then re-partitioning the united matching (actually a multigraph) into matchings of two other subgraphs, in o...

متن کامل

Graphical condensation for enumerating perfect matchings

The method of graphical condensation for enumerating perfect matchings was found by Propp (Theoretical Computer Science 303(2003), 267-301), and was generalized by Kuo (Theoretical Computer Science 319 (2004), 29-57). In this paper, we obtain some more general results on graphical condensation than Kuo’s. Our method is also different from Kuo’s. As applications of our results, we obtain a new p...

متن کامل

Some Algebraic and Combinatorial Properties of the Complete $T$-Partite Graphs

In this paper, we characterize the shellable complete $t$-partite graphs. We also show for these types of graphs the concepts vertex decomposable, shellable and sequentially Cohen-Macaulay are equivalent. Furthermore, we give a combinatorial condition for the Cohen-Macaulay complete $t$-partite graphs.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Theor. Comput. Sci.

دوره 349  شماره 

صفحات  -

تاریخ انتشار 2005