Treatment planning study: Motion mitigation techniques for lung tumors

نویسندگان

  • Christoph Bert
  • Eike Rietzel
چکیده

Introduction Currently, the C-12 therapy performed at GSI cannot be applied to moving tumors because interplay between scanned ion beam and moving target does not allow controlled dose delivery. Several techniques are proposed to mitigate the influence of interplay. Among them are tracking [1], gating [2], rescanning [3], and use of margins. We used the 4D extension of GSI’s treatment planning software TRiP [4] to calculate dose distributions for these mitigation techniques. Studies are based on 4DCT data from 5 lung tumor patients. Exemplary data are shown here, a detailed report will follow elsewhere.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of lung normal tissue doses in lung tumors radiation therapy using both gated and conventional radiotherapy

Introduction: In radiation therapy of lung tumors, respiratory motion causes target moving, so a larger margin is needed to cover the clinical target volume (CTV). With the margin increasing, a larger volume of normal tissue will be exposed to high-dose.  In this study, dosimetric parameters of normal lung tissue were compared between gated and conventional radiotherapy (RT), u...

متن کامل

A quantitative investigation on lung tumor site on its motion tracking in radiotherapy with external surrogates

Introduction: In external beam radiotherapy each effort is done to deliver 3D dose distribution onto the tumor volume uniformly, while minimizing the dose to healthy organs at the same time. Radiation treatment of tumors located at thorax region such as lung and liver has a challenging issue during target localization since these tumors move mainly due to respiration. There are...

متن کامل

Management of organ motion in scanned ion beam therapy

Scanned ion beam therapy has special demands for treatment of intra-fractionally moving tumors such as lesions in lung or liver. Interplay effects between beam and organ motion can in those settings lead to under-dosage of the target volume. Dedicated treatment techniques such as gating or abdominal compression are required. In addition 4D treatment planning should be used to determine strategi...

متن کامل

Treatment Parameters Optimization to Compensate for Interfractional Anatomy Variability and Intrafractional Tumor Motion

Scanned ion beam therapy of lung tumors is severely limited in its clinical applicability by intrafractional organ motion, interference effects between beam and tumor motion (interplay), as well as interfractional anatomic changes. To compensate for dose deterioration caused by intrafractional motion, motion mitigation techniques, such as gating, have been developed. However, optimization of th...

متن کامل

4D treatment planning for scanned ion beams

At Gesellschaft für Schwerionenforschung (GSI) more than 330 patients have been treated with scanned carbon ion beams in a pilot project. To date, only stationary tumors have been treated. In the presence of motion, scanned ion beam therapy is not yet possible because of interplay effects between scanned beam and target motion which can cause severe mis-dosage. We have started a project to trea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007