C239S Mutation in the β-Tubulin of Phytophthora sojae Confers Resistance to Zoxamide

نویسندگان

  • Meng Cai
  • Jianqiang Miao
  • Xi Song
  • Dong Lin
  • Yang Bi
  • Lei Chen
  • Xili Liu
  • Brett M. Tyler
چکیده

Zoxamide is the sole β-tubulin inhibitor registered for the control of oomycete pathogens. The current study investigated the activity of zoxamide against Phytophthora sojae and baseline sensitivity was established with a mean EC50 of 0.048 μg/ml. The data is critical for monitoring changes in zoxamide-sensitivity in the field. Three stable resistant mutants with a high resistance level were obtained by selection on zoxamide amended media. Although the development of resistance occurred at a low frequency, there were no apparent fitness penalty in the acquired mutants in terms of growth rate, sporulation, germination and pathogenicity. Based on the biological profiles and low mutagenesis rate, the resistance risk of P. sojae to zoxamide can be estimated as low to medium. Further investigation revealed all the zoxamide-resistant mutants had a point mutation of C239S in their β-tubulin. Zoxamide also exhibited high activity against most species from the genus Pythium in which only Pythium aphanidermatum was found naturally resistant to zoxamide and harboring the natural point mutation S239 in the β-tubulin. Back-transformation in P. sojae with the mutated allele (S239) confirmed the C239S mutation can induce resistance to zoxamide, and the resistance level was positively related to the expression level of the mutated gene. In contrast, the overexpression of the wild type gene was unable to cause zoxamide resistance. It is the first report on the resistance molecular mechanism of zoxamide in oomycetes. Based on our study, C239 is supposed to be a key target site of zoxamide, which distinguishes zoxamide from benzimidazoles and accounts for its low resistance risk. The result can provide advice on the design of new β-tubulin inhibitors in future.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

M233I Mutation in the β-Tubulin of Botrytis cinerea Confers Resistance to Zoxamide

Three phenotypes were detected in 161 Botrytis cinerea field isolates, including Zox(S)Car(S) (sensitive to zoxamide and carbendazim), Zox(S)Car(R) (sensitive to zoxamide and resistant to carbendazim), and Zox(R)Car(R) (resistant to zoxamide and carbendazim), but not Zox(R)Car(S) (resistant to zoxamide and sensitive to carbendazim). The baseline sensitivity to zoxamide was determined with a mea...

متن کامل

Two Non-target Recessive Genes Confer Resistance to the Anti-Oomycete Microtubule Inhibitor Zoxamide in Phytophthora capsici

This study characterized isolates of P. capsici that had developed a novel mechanism of resistance to zoxamide, which altered the minimum inhibition concentration (MIC) but not the EC50. Molecular analysis revealed that the β-tubulin gene of the resistant isolates contained no mutations and was expressed at the same level as in zoxamide-sensitive isolates. This suggested that P. capsici had dev...

متن کامل

Soybean phytophthora resistance gene Rps8 maps closely to the Rps3 region.

Root and stem rot is one of the major diseases of soybean. It is caused by the oomycete pathogen Phytophthora sojae. A series of resistance genes (Rps) have been providing soybean with reasonable protection against this pathogen. Among these genes, Rps8, which confers resistance to most P. sojae isolates, recently has been mapped. However, the most closely linked molecular marker was mapped at ...

متن کامل

Genetic Diversity of Phytophthora Sojae in Iran

Objective: The aim of this study was to estimate genetic variability and phonetic relationships of 50 isolates of P. sojae from Iran. Methods: During 2005–2007, 142 isolates of Phytophthora sojae were collected from soil samples and diseased soybean plants from Lorestan, Mazandaran, Golestan and Ardabil provinces. Races of the isolates were determined. DNA of P. sojae...

متن کامل

GmWRKY31 and GmHDL56 Enhances Resistance to Phytophthora sojae by Regulating Defense-Related Gene Expression in Soybean

Phytophthora root and stem rot of soybean [Glycine max (L.) Merr.] caused by the oomycete Phytophthora sojae, is a destructive disease worldwide. The molecular mechanism of the soybean response to P. sojae is largely unclear. We report a novel WRKY transcription factor (TF) in soybean, GmWRKY31, in the host response to P. sojae. Overexpression and RNA interference analysis demonstrated that GmW...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016