XAB2, a novel tetratricopeptide repeat protein involved in transcription-coupled DNA repair and transcription.

نویسندگان

  • Y Nakatsu
  • H Asahina
  • E Citterio
  • S Rademakers
  • W Vermeulen
  • S Kamiuchi
  • J P Yeo
  • M C Khaw
  • M Saijo
  • N Kodo
  • T Matsuda
  • J H Hoeijmakers
  • K Tanaka
چکیده

Nucleotide excision repair is a highly versatile DNA repair system responsible for elimination of a wide variety of lesions from the genome. It is comprised of two subpathways: transcription-coupled repair that accomplishes efficient removal of damage blocking transcription and global genome repair. Recently, the basic mechanism of global genome repair has emerged from biochemical studies. However, little is known about transcription-coupled repair in eukaryotes. Here we report the identification of a novel protein designated XAB2 (XPA-binding protein 2) that was identified by virtue of its ability to interact with XPA, a factor central to both nucleotide excision repair subpathways. The XAB2 protein of 855 amino acids consists mainly of 15 tetratricopeptide repeats. In addition to interacting with XPA, immunoprecipitation experiments demonstrated that a fraction of XAB2 is able to interact with the transcription-coupled repair-specific proteins CSA and CSB as well as RNA polymerase II. Furthermore, antibodies against XAB2 inhibited both transcription-coupled repair and transcription in vivo but not global genome repair when microinjected into living fibroblasts. These results indicate that XAB2 is a novel component involved in transcription-coupled repair and transcription.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Knockdown of XAB2 enhances all-trans retinoic acid-induced cellular differentiation in all-trans retinoic acid-sensitive and -resistant cancer cells.

Xeroderma pigmentosum group A (XPA)-binding protein 2 (XAB2) is composed of 855 amino acids, contains 15 tetratricopeptide repeat motifs, and associates with Cockayne syndrome group A and B proteins and RNA polymerase II, as well as XPA. In vitro and in vivo studies showed that XAB2 is involved in pre-mRNA splicing, transcription, and transcription-coupled DNA repair, leading to preimplantation...

متن کامل

Tetratricopeptide repeat factor XAB2 mediates the end resection step of homologous recombination

We examined the influence of the tetratricopeptide repeat factor XAB2 on chromosomal break repair, and found that XAB2 promotes end resection that generates the 3' ssDNA intermediate for homologous recombination (HR). Namely, XAB2 is important for chromosomal double-strand break (DSB) repair via two pathways of HR that require end resection as an intermediate step, end resection of camptothecin...

متن کامل

Topoisomerase 1 and single-strand break repair modulate transcription-induced CAG repeat contraction in human cells.

Expanded trinucleotide repeats are responsible for a number of neurodegenerative diseases, such as Huntington disease and myotonic dystrophy type 1. The mechanisms that underlie repeat instability in the germ line and in the somatic tissues of human patients are undefined. Using a selection assay based on contraction of CAG repeat tracts in human cells, we screened the Prestwick chemical librar...

متن کامل

Eicosapentapeptide repeats (EPRs): novel repeat proteins specific to flowering plants

In this report, we describe a novel tandem peptide repeat protein, Eicosapentapeptide repeat (EPR), which occurs notably only in flowering plants. The EPRs are characterized by a 25 amino acid repeat unit, X(2)CX(4)CX(10)CX(2)HGGG, repeated 10 times tandemly. Sequence search revealed that the repeat motif is highly conserved across its occurrence. EPRs are predicted to exist as quasi-globular s...

متن کامل

Nucleotide Excision Repair, Mismatch Repair, and R-Loops Modulate Convergent Transcription-Induced Cell Death and Repeat Instability

Expansion of CAG•CTG tracts located in specific genes is responsible for 13 human neurodegenerative disorders, the pathogenic mechanisms of which are not yet well defined. These disease genes are ubiquitously expressed in human tissues, and transcription has been identified as one of the major pathways destabilizing the repeats. Transcription-induced repeat instability depends on transcription-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 275 45  شماره 

صفحات  -

تاریخ انتشار 2000