D-Arabitol catabolic pathway in Klebsiella aerogenes.
نویسندگان
چکیده
Klebsiella aerogenes strain W70 has an inducible pathway for the degradation of d-arabitol which is comparable to the one found in Aerobacter aerogenes strain PRL-R3. The pathway is also similar to the pathway of ribitol catabolism in that it is composed of a pentitol dehydrogenase, d-arabitol dehydrogenase (ADH), and a pentulokinase, d-xylulokinase (DXK). These two enzymes are coordinately controlled and induced in response to d-arabitol, the apparent inducer of synthesis of these enzymes. We obtained mutants which lacked a functional d-xylose pathway and were constitutive for the ribitol catabolic pathway. These mutants were able to grow on the unusual pentitol, xylitol, only if they contained the functional DXK of the d-arabitol pathway. This provided us with a specific selection technique for DXK(+) transductants. As in A. aerogenes, mutants constitutive for ADH were able to use this enzyme to convert the hexitol d-mannitol to d-fructose. With mutants blocked in the normal d-mannitol catabolic pathway, growth on d-mannitol became a test for ADH constitutivity. Growth of such mutants on xylitol, d-arabitol, and d-mannitol was utilized to classify transductants in mapping, by transductional analysis, the loci involved in d-arabitol utilization. Three-point crosses gave the order dalK-dalD-dalC, where dalK is the DXK structural gene, dalD is the ADH structural gene, and dalC is a regulatory site controlling synthesis of both enzymes.
منابع مشابه
Purification and properties of D-ribulokinase and D-xylulokinase from Klebsiella aerogenes.
The D-ribulokinase and D-xylulokinase of Klebsiella aerogenes were purified to homogeneity from Escherichia coli K12 construct strains that synthesized these enzymes constitutively. The D-ribulokinase, which is encoded in the ribitol operon, is active as a dimer of 60 000 subunit mol.wt., whereas the D-xylulokinase, which is encoded in the D-arabitol operon, is active as a dimer of 54 000 subun...
متن کاملDirected evolution of a second xylitol catabolic pathway in Klebsiella pneumoniae.
Klebsiella pneumoniae PRL-R3 has inducible catabolic pathways for the degradation of ribitol and D-arabitol but cannot utilize xylitol as a growth substrate. A mutation in the rbtB regulatory gene of the ribitol operon permits the constitutive synthesis of the ribitol catabolic enzymes and allows growth on xylitol. The evolved xylitol catabolic pathway consists of an induced D-arabitol permease...
متن کاملRegulation of pentitol metabolism by Aerobacter aerogenes. I. Coordinate control of ribitol dehydrogenase and D-ribulokinase activities.
Induction studies on Aerobacter aerogenes strain PRL-R3, using ribitol as the inducer-substrate, indicated that two enzymes of ribitol catabolism, ribitol dehydrogenase and d-ribulokinase, are coordinately induced. The utilization of d-arabinose as a substrate resulted in the induction of ribitol dehydrogenase as well as d-ribulokinase. Mutants which were constitutive for ribitol dehydrogenase ...
متن کاملAn inducible D-arabitol dehydrogenase from Aerobacter aerogenes.
A capsulated strain of derobacter aerogenes 1033 (2) has been found to metabolize glycerol via two separate pathways. The first pathway was mediated by a diphosphopyridine nucleotidelinked glycerol dehydrogenase and a specific dihydroxyacetone kinase, whereas the second pathway involved a specific glycerol kinase and a DPN-independent L-a-glycerophosphate dehydrogenase (3-5). Although all the a...
متن کاملGrowth of Aerobacter aerogenes on D-arabinose and L-xylose.
Aerobacter aerogenes is noted for its versatility in being capable of growth by utilizing many of the rare and unnatural carbohydrates as substrates. The mechanism of growth on several of these unnatural carbohydrates has been previously reported. A. aerogenes PRL-R3 possesses the ability to synthesize, in response to the common substrate ribitol, a ribitol dehydrogenase which will also catalyz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 119 1 شماره
صفحات -
تاریخ انتشار 1974