The use of chitosan to damage Cryptococcus neoformans biofilms.

نویسندگان

  • Luis R Martinez
  • Mircea Radu Mihu
  • George Han
  • Susana Frases
  • Radames J B Cordero
  • Arturo Casadevall
  • Adam J Friedman
  • Joel M Friedman
  • Joshua D Nosanchuk
چکیده

The use of indwelling medical devices (e.g. pacemakers, prosthetic joints, catheters, etc) continues to increase, yet these devices are all too often complicated by infections with biofilm-forming microbes with increased resistance to antimicrobial agents and host defense mechanisms. We investigated the ability of chitosan, a polymer isolated from crustacean exoskeletons, to damage biofilms formed by the pathogenic fungus Cryptococcus neoformans. Using 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino) carbonyl]-2H-tetrazolium-hydroxide (XTT) reduction assay and CFU determinations, we showed that chitosan significantly reduced both the metabolic activity of the biofilms and cell viability, respectively. We further demonstrated that chitosan penetrated biofilms and damaged fungal cells using confocal and scanning electron microscopy. Notably, melanization, an important virulence determinant of C. neoformans, did not protect cryptococcal biofilms against chitosan. The chitosan concentrations used in this study to evaluate fungal biofilm susceptibility were not toxic to human endothelial cells. Our results indicate that cryptococcal biofilms are susceptible to treatment with chitosan, suggesting an option for the prevention or treatment of fungal biofilms on indwelling medical devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cell wall chitosan is necessary for virulence in the opportunistic pathogen Cryptococcus neoformans.

Cryptococcus neoformans is an opportunistic fungal pathogen that causes meningoencephalitis. Its cell wall is composed of glucans, proteins, chitin, and chitosan. Multiple genetic approaches have defined a chitosan-deficient syndrome that includes slow growth and decreased cell integrity. Here we demonstrate chitosan is necessary for virulence and persistence in the mammalian host.

متن کامل

Antibody-guided alpha radiation effectively damages fungal biofilms.

The use of indwelling medical devices--pacemakers, prosthetic joints, catheters--is rapidly growing and is often complicated by infections with biofilm-forming microbes that are resistant to antimicrobial agents and host defense mechanisms. We investigated for the first time the use of microbe-specific monoclonal antibodies (MAbs) as delivery vehicles for targeting biofilms with cytocidal radia...

متن کامل

Specific antibody to Cryptococcus neoformans glucurunoxylomannan antagonizes antifungal drug action against cryptococcal biofilms in vitro.

The fungus Cryptococcus neoformans possesses a polysaccharide capsule and can form biofilms on medical devices. We investigated the efficacy that the combination of a specific antibody to the capsular polysaccharide and antifungal therapy has against cryptococcal biofilms. The antibody enhanced the susceptibility of planktonic cells to antifungal agents, but an antagonistic effect was observed ...

متن کامل

DETECTION OF CRYPTOCOCCUS NEOFORMANS BY SEMINESTED PCR IN CEREBROSPINAL FLUID

 ABSTRACT Life-threatening infections caused by the encapsulated fungal pathogen Cryptococcus neoformans have been increasing steadily over the past 10 years. Cryptococcus neoformans is recognized as the most frequent fungal infection of the central nervous system (CNS) in immunocompetent as well as immunocompromised patients. We report the development of a semi-nested- PCR-based assay for the ...

متن کامل

Susceptibility of Cryptococcus neoformans biofilms to antifungal agents in vitro.

Microbial biofilms contribute to virulence and resistance to antibiotics by shielding microbial cells from host defenses and antimicrobial drugs, respectively. Cryptococcus neoformans was demonstrated to form biofilms in polystyrene microtiter plates. The numbers of CFU of disaggregated biofilms, 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetrazolium hydroxide reducti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomaterials

دوره 31 4  شماره 

صفحات  -

تاریخ انتشار 2010