Applying lazy learning algorithms to tackle concept drift in spam filtering
نویسندگان
چکیده
A great amount of machine learning techniques have been applied to problems where data is collected over an extended period of time. However, the disadvantage with many real-world applications is that the distribution underlying the data is likely to change over time. In these situations, a problem that many global eager learners face is their inability to adapt to local concept drift. Concept drift in spam is particularly difficult as the spammers actively change the nature of their messages to elude spam filters. Algorithms that track concept drift must be able to identify a change in the target concept (spam or legitimate e-mails) without direct knowledge of the underlying shift in distribution. In this paper we show how a previously successful instance-based reasoning e-mail filtering model can be improved in order to better track concept drift in spam domain. Our proposal is based on the definition of two complementary techniques able to select both terms and e-mails representative of the current situation. The enhanced system is evaluated against other well-known successful lazy learning approaches in two scenarios, all within a cost-sensitive framework. The results obtained from the experiments carried out are very promising and back up the idea that instance-based reasoning systems can offer a number of advantages tackling concept drift in dynamic problems, as in the case of the anti-spam filtering domain. 2006 Elsevier Ltd. All rights reserved.
منابع مشابه
A Comparison of Ensemble and Case-Base Maintenance Techniques for Handling Concept Drift in Spam Filtering
The problem of concept drift has recently received considerable attention in machine learning research. One important practical problem where concept drift needs to be addressed is spam filtering. The literature on concept drift shows that among the most promising approaches are ensembles and a variety of techniques for ensemble construction has been proposed. In this paper we consider an alter...
متن کاملA case-based technique for tracking concept drift in spam filtering
Spam filtering is a particularly challenging machine learning task as the data distribution and concept being learned changes over time. It exhibits a particularly awkward form of concept drift as the change is driven by spammers wishing to circumvent spam filters. In this paper we show that lazy learning techniques are appropriate for such dynamically changing contexts. We present a case-based...
متن کاملA Case-Based Approach to Spam Filtering that Can Track Concept Drift
There are a few key benefits of a case-based approach to spam filtering. First, the many different sub-types of spam suggest that a local learner, such as Case-Based Reasoning (CBR) will perform well. Second, the lazy approach to learning in CBR allows for easy updating as new types of spam arrive. Third, the case-based approach to spam filtering allows for the sharing of cases and thus a shari...
متن کاملTracking Concept Drift at Feature Selection Stage in SpamHunting: An Anti-spam Instance-Based Reasoning System
In this paper we propose a novel feature selection method able to handle concept drift problems in spam filtering domain. The proposed technique is applied to a previous successful instance-based reasoning e-mail filtering system called SpamHunting. Our achieved information criterion is based on several ideas extracted from the well-known information measure introduced by Shannon. We show how r...
متن کاملUsing Case-Based Reasoning for Spam Filtering
Spam is a universal problem with which everyone is familiar. Figures published in 2005 state that about 75% of all email sent today is spam. In spite of significant new legal and technical approaches to combat it, spam remains a big problem that is costing companies meaningful amounts of money in lost productivity, clogged email systems, bandwidth and technical support. A number of approaches a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Expert Syst. Appl.
دوره 33 شماره
صفحات -
تاریخ انتشار 2007