Processes contributing to metabolic depression in hepatopancreas cells from the snail Helix aspersa.

نویسندگان

  • T Bishop
  • M D Brand
چکیده

Cells isolated from the hepatopancreas of the land snail Helix aspersa strongly depress respiration both immediately in response to lowered P(O2) (oxygen conformation) and, in the longer term, during aestivation. These phenomena were analysed by dividing cellular respiration into non-mitochondrial and mitochondrial respiration using the mitochondrial poisons myxothiazol, antimycin and azide. Non-mitochondrial respiration accounted for a surprisingly large proportion, 65+/-5 %, of cellular respiration in control cells at 70 % air saturation. Non-mitochondrial respiration decreased substantially as oxygen tension was lowered, but mitochondrial respiration did not, and the oxygen-conforming behaviour of the cells was due entirely to the oxygen-dependence of non-mitochondrial oxygen consumption. Non-mitochondrial respiration was still responsible for 45+/-2 % of cellular respiration at physiological oxygen tension. Mitochondrial respiration was further subdivided into respiration used to drive ATP turnover and respiration used to drive futile proton cycling across the mitochondrial inner membrane using the ATP synthase inhibitor oligomycin. At physiological oxygen tensions, 34+/-5 % of cellular respiration was used to drive ATP turnover and 22+/-4 % was used to drive proton cycling, echoing the metabolic inefficiency previously observed in liver cells from mammals, reptiles and amphibians. The respiration rate of hepatopancreas cells from aestivating snails was only 37 % of the control value. This was caused by proportional decreases in non-mitochondrial and mitochondrial respiration and in respiration to drive ATP turnover and to drive proton cycling. Thus, the fraction of cellular respiration devoted to different processes remained constant and the cellular energy balance was preserved in the hypometabolic state.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intrinsic metabolic depression in cells isolated from the hepatopancreas of estivating snails.

Many animals across the phylogenetic scale are routinely capable of depressing their metabolic rate to 5-15% of that at rest, remaining in this state sometimes for years. However, despite its widespread occurrence, the biochemical processes associated with metabolic depression remain obscure. We demonstrate here the development of an isolated cell model for the study of metabolic depression. Th...

متن کامل

In vivo downregulation of protein synthesis in the snail Helix apersa during estivation.

Protein synthesis is downregulated during metabolic depression in a number of systems where the metabolic depression is effected by obvious extrinsic cues. The metabolic depression of the estivating land snail Helix apersa occurs in the absence of any obvious physiological stress and has an intrinsic component independent of temperature, pH, O(2) status, or osmolality. We show that this metabol...

متن کامل

The modulatory effects of orexin B on the calcium channels activity in neuronal cells of Helix aspersa (garden snail)

Introduction: The functional effects of orexin-B on the calcium spikes and excitability of the neuronal soma membrane of garden snail, Helix aspersa were studied. Methods: Conventional intracellular recording, under the current clamp conditions was performed to examine the effects of orexin-B on the configuration and electrophysiological properties of calcium spikes. Results: Application o...

متن کامل

Primary causes of decreased mitochondrial oxygen consumption during metabolic depression in snail cells.

Cells isolated from the hepatopancreas of estivating snails (Helix aspersa) have strongly depressed mitochondrial respiration compared with controls. Mitochondrial respiration was divided into substrate oxidation (which produces the mitochondrial membrane potential) and ATP turnover and proton leak (which consume it). The activity of substrate oxidation (and probably ATP turnover) decreased, wh...

متن کامل

Hypometabolism, antioxidant defenses and free radical metabolism in the pulmonate land snail Helix aspersa.

The aim of this work was to evaluate the effect of a cycle of estivation and awakening on free radical metabolism in selected organs of the land snail Helix aspersa. Estivation for 20 days induced a 4.9- and 1.8-fold increase in selenium-dependent glutathione peroxidase activity (Se-GPX) and in total glutathione levels (GSH-eq), respectively, in hepatopancreas when compared to activity in activ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 203 Pt 23  شماره 

صفحات  -

تاریخ انتشار 2000