Optimal approximation of stochastic differential equations by adaptive step-size control

نویسندگان

  • Norbert Hofmann
  • Thomas Müller-Gronbach
  • Klaus Ritter
چکیده

We study the pathwise (strong) approximation of scalar stochastic differential equations with respect to the global error in the L2-norm. For equations with additive noise we establish a sharp lower error bound in the class of arbitrary methods that use a fixed number of observations of the driving Brownian motion. As a consequence, higher order methods do not exist if the global error is analyzed. We introduce an adaptive step-size control for the Euler scheme which performs asymptotically optimally. In particular, the new method is more efficient than an equidistant discretization. This superiority is confirmed in simulation experiments for equations with additive noise, as well as for general scalar equations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

APPROXIMATION OF STOCHASTIC PARABOLIC DIFFERENTIAL EQUATIONS WITH TWO DIFFERENT FINITE DIFFERENCE SCHEMES

We focus on the use of two stable and accurate explicit finite difference schemes in order to approximate the solution of stochastic partial differential equations of It¨o type, in particular, parabolic equations. The main properties of these deterministic difference methods, i.e., convergence, consistency, and stability, are separately developed for the stochastic cases.

متن کامل

Market Adaptive Control Function Optimization in Continuous Cover Forest Management

Economically optimal management of a continuous cover forest is considered here. Initially, there is a large number of trees of different sizes and the forest may contain several species. We want to optimize the harvest decisions over time, using continuous cover forestry, which is denoted by CCF. We maximize our objective function, the expected present value, with consideration of stochastic p...

متن کامل

Convergence Rates for Adaptive Weak Approximation of Stochastic Differential Equations

Convergence rates of adaptive algorithms for weak approximations of Itô stochastic differential equations are proved for the Monte Carlo Euler method. Two algorithms based either on optimal stochastic time steps or optimal deterministic time steps are studied. The analysis of their computational complexity combines the error expansions with a posteriori leading order term introduced in Szepessy...

متن کامل

Stability of two classes of improved backward Euler methods for stochastic delay differential equations of neutral type

This paper examines stability analysis of two classes of improved backward Euler methods, namely split-step $(theta, lambda)$-backward Euler (SSBE) and semi-implicit $(theta,lambda)$-Euler (SIE) methods, for nonlinear neutral stochastic delay differential equations (NSDDEs). It is proved that the SSBE method with $theta, lambdain(0,1]$ can recover the exponential mean-square stability with some...

متن کامل

Computational Method for Fractional-Order Stochastic Delay Differential Equations

Dynamic systems in many branches of science and industry are often perturbed by various types of environmental noise. Analysis of this class of models are very popular among researchers. In this paper, we present a method for approximating solution of fractional-order stochastic delay differential equations driven by Brownian motion. The fractional derivatives are considered in the Caputo sense...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 69  شماره 

صفحات  -

تاریخ انتشار 2000