A New Error Correction Scheme for Physical Unclonable Functions

نویسندگان

  • Sven Müelich
  • Martin Bossert
چکیده

Error correction is an indispensable component when Physical Unclonable Functions (PUFs) are used in cryptographic applications. So far, there exist schemes that obtain helper data, which they need within the error correction process. We introduce a new scheme, which only uses an error correcting code without any further helper data. The main idea is to construct for each PUF instance an individual code which contains the initial PUF response as codeword. In this work we use LDPC codes, however other code classes are also possible. Our scheme allows a trade-off between code rate and cryptographic security. In addition, decoding with linear complexity is possible.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Security Considerations of a New Helper Data Scheme for Physical Unclonable Functions

When Physical Unclonable Functions (PUFs) are used for cryptographic purposes, error correction in combination with a helper data scheme is an essential component due to the fuzzy nature of a PUF. All known schemes require both a code and additional helper data to recover PUF responses. Recently, Müelich and Bossert [1] proposed a scheme that only requires a code. In this paper, we answer two o...

متن کامل

Error Correction for Physical Unclonable Functions Using Generalized Concatenated Codes

Physical Unclonable Functions can be used for secure key generation in cryptographic applications. It is explained how methods from coding theory must be applied in order to ensure reliable key regeneration. Based on previous work, we show ways how to obtain better results with respect to error probability and codeword length. Also, an example based on Generalized Concatenated codes is given, w...

متن کامل

An Alternative to Error Correction for SRAM-Like PUFs

We propose a new technique called stable-PUF-marking as an alternative to error correction to get reproducible (i.e. stable) outputs from physical unclonable functions (PUF). The concept is based on the influence of the mismatch on the stability of the PUF-cells’ output. To use this fact, cells providing a high mismatch between their crucial transistors are selected to substantially lower the e...

متن کامل

Using Convolutional Codes for Key Extraction in Physical Unclonable Functions

Physical Unclonable Functions (PUFs) exploit variations in the manufacturing process to derive bit sequences from integrated circuits, which can be used as secure cryptographic keys. Instead of storing the keys in an insecure, non-volatile memory, they can be reproduced when needed. Since the reproduced sequences are not stable due to physical reasons, error correction must be applied. Recently...

متن کامل

Timing Attack Resilient Decoding Algorithms for Physical Unclonable Functions

This paper deals with the application of list decoding of Reed–Solomon codes to a concatenated code for key reproduction using Physical Unclonable Functions. The resulting codes achieve a higher error-correction performance at the same code rate than known schemes in this scenario. We also show that their decoding algorithms can be protected from side-channel attacks on the runtime both by mask...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1611.01960  شماره 

صفحات  -

تاریخ انتشار 2016