Characterization of ex vivo cultured neuronal- and glial- like cells from human idiopathic epiretinal membranes

نویسندگان

  • Sofija Andjelić
  • Xhevat Lumi
  • Xiaohe Yan
  • Jochen Graw
  • Morten C Moe
  • Andrea Facsk ó
  • Marko Hawlina
  • Goran Petrovski
چکیده

BACKGROUND Characterization of the neuro-glial profile of cells growing out of human idiopathic epiretinal membranes (iERMs) and testing their proliferative and pluripotent properties ex vivo is needed to better understand the pathogenesis of their formation. METHODS iERMs obtained during uneventful vitrectomies were cultivated ex vivo under adherent conditions and assessed by standard morphological and immunocytochemical methods. The intracellular calcium dynamics of the outgrowing cells was assessed by fluorescent dye Fura-2 in response to acetylcholine (ACh)- or mechano- stimulation. RESULTS The cells from the iERMs formed sphere-like structures when cultured ex vivo. The diameter of the spheres increased by 5% at day 6 and kept an increasing tendency over a month time. The outgrowing cells from the iERM spheres had mainly glial- and some neuronal- like morphology. ACh- or mechano- stimulation of these cells induced intracellular calcium propagation in both cell types; in the neuronal-like cells resembling action potential from the soma to the dendrites. Immunocytochemistry confirmed presence of glial- and neuronal cell phenotype (GFAP and Nestin-1 positivity, respectively) in the iERMs, as well as presence of pluripotency marker (Sox2). CONCLUSION iERMs contain cells of neuronal- and glial- like origin which have proliferative and pluripotent potential, show functionality reflected through calcium dynamics upon ACh and mechano- stimulation, and a corresponding molecular phenotype.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional and Molecular Characterization of Ex Vivo Cultured Epiretinal Membrane Cells from Human Proliferative Diabetic Retinopathy

Characterization of the cell surface marker phenotype of ex vivo cultured cells growing out of human fibrovascular epiretinal membranes (fvERMs) from proliferative diabetic retinopathy (PDR) can give insight into their function in immunity, angiogenesis, and retinal detachment. FvERMs from uneventful vitrectomies due to PDR were cultured adherently ex vivo. Surface marker analysis, release of i...

متن کامل

Ganglion cell neurites in human idiopathic epiretinal membranes.

AIM To identify and confirm the presence of neural elements in idiopathic epiretinal membranes removed from patients' eyes during vitrectomy with epiretinal membrane peeling. METHODS Human epiretinal membranes from patients with no other known eye disease and of varying durations were labelled immunohistochemically with antibodies for neurofilament protein, laminin and either vimentin or GFAP...

متن کامل

A Study on Transdifferentiation of Bone Marrow Stromal Cells into Neuronal and Glial-Like Cells In Vitro by Different Inducers

Introduction: There are some evidences to suggest that bone marrow stromal cells (BMSCs) not only differentiate into mesodermal cells, but also adopt the fate of endodermal and ectodermal cell types. BMSCs can be a valuable cell source as an autograft for clinical application involving regeneration of the central nervous system. Bone marrow stromal cells can be expanded rapidly in vitro and can...

متن کامل

Identification of ganglion cell neurites in human subretinal and epiretinal membranes.

AIM To determine whether neural elements are present in subretinal and epiretinal proliferative vitreoretinopathy (PVR) membranes as well as in diabetic, fibrovascular membranes removed from patients during vitrectomy surgery. METHODS Human subretinal and epiretinal membranes of varying durations were immunolabelled with different combinations of antibodies to glial fibrillary acidic protein,...

متن کامل

Evidence that neurites in human epiretinal membranes express melanopsin, calretinin, rod opsin and neurofilament protein.

AIMS We have previously identified neurofilament-protein-containing neurites in human epiretinal membranes (ERMs). The aim of this study was to further characterise these neurites by examining the expression of additional specific proteins in human ERMs and to correlate this expression with various retinal disease conditions. METHODS Epiretinal membranes originating from 43 patients with prol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2014