Swarm Intelligence Techniques and Their Adaptive Nature with Applications
نویسندگان
چکیده
Swarm based techniques have huge application domain covering multiple disciplines, which include power system, fuzzy system, forecasting, bio-medicine, sociological analysis, image processing, sound processing, signal processing, data analysis, process modeling, process controlling etc. In last two decades numerous techniques and their variations have been developed. Despite many variations are being carried out, main skeleton of these techniques remain same. With diverse application domains, most of these techniques have been modified to fit into a particular application. These changes undergo mostly in perspective of encoding scheme, parameter tuning and search strategy. Sources of real world problems are different, but their nature sometimes found similar to other problems. Hence, swarm based techniques utilized for one of these problems can be applied to others as well. As sources of these problems are different, applicability of such techniques are very much dependent on the problem. Same encoding scheme may not be suitable for the other similar kind of problems, which has led to development of problem specific encoding schemes. Sometimes found that, even though encoding scheme is compatible to a problem, parameters used in the technique does not utilized in favor of the problem. So, parameter tuning approaches are incorporated into the swarm based techniques. Similarly, search strategy utilized in swarm based techniques are also vary with the application domain. In this chapter we will study those problem specific adaptive nature of swarm based techniques. Essence of this study is to find pros and cons of such adaptation. Our study also aims to draw some aspects of such problem specific variations through which it can be predicted that what kind of adaptation is more convenient for any real world problem. A. Biswas (&) B. Biswas Department of Computer Science and Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India e-mail: [email protected]; [email protected] B. Biswas e-mail: [email protected] © Springer International Publishing Switzerland 2015 Q. Zhu and A.T. Azar (eds.), Complex System Modelling and Control Through Intelligent Soft Computations, Studies in Fuzziness and Soft Computing 319, DOI 10.1007/978-3-319-12883-2_9 253
منابع مشابه
Adaptive Rule-Base Influence Function Mechanism for Cultural Algorithm
This study proposes a modified version of cultural algorithms (CAs) which benefits from rule-based system for influence function. This rule-based system selects and applies the suitable knowledge source according to the distribution of the solutions. This is important to use appropriate influence function to apply to a specific individual, regarding to its role in the search process. This rule ...
متن کاملA COMPARATIVE STUDY OF TRADITIONAL AND INTELLIGENCE SOFT COMPUTING METHODS FOR PREDICTING COMPRESSIVE STRENGTH OF SELF – COMPACTING CONCRETES
This study investigates the prediction model of compressive strength of self–compacting concrete (SCC) by utilizing soft computing techniques. The techniques consist of adaptive neuro–based fuzzy inference system (ANFIS), artificial neural network (ANN) and the hybrid of particle swarm optimization with passive congregation (PSOPC) and ANFIS called PSOPC–ANFIS. Their perf...
متن کاملSwarm intelligence introduction and applications pdf
Of realistic swarm biology engineering: model simplification and tuning for IT applications.Combines an overview of swarm intelligence with an up-to-date treatment of the. With the biological foundations, optimization, swarm robotics, and applications in. swarm intelligence introduction and applications pdf wide-range applications of swarm intelligence algorithms is presented in many.applicatio...
متن کاملApplications of Nature-Inspired Intelligence in Finance
A great variety of complex real-life problems can be sufficiently solved by intelligent nature-inspired methods which can be considered part of artificial or computational intelligence. These newly introduced techniques have proven their important role on many successful implementations, mostly related to optimization problems. The basic reason for their success is that they imitate the way tha...
متن کاملDirect adaptive fuzzy control of flexible-joint robots including actuator dynamics using particle swarm optimization
In this paper a novel direct adaptive fuzzy system is proposed to control flexible-joints robot including actuator dynamics. The design includes two interior loops: the inner loop controls the motor position using proposed approach while the outer loop controls the joint angle of the robot using a PID control law. One novelty of this paper is the use of a PSO algorithm for optimizing the contro...
متن کامل