MiR-142-3p Suppresses SOCS6 Expression and Promotes Cell Proliferation in Nasopharyngeal Carcinoma.
نویسندگان
چکیده
BACKGROUND/AIMS An increasing number of studies show that microRNAs (miRNAs) play crucial roles in nasopharyngeal carcinoma (NPC) tumorigenesis. The aim of our study was to investigate the biological roles and mechanisms of miR-142-3p in NPC. METHODS miR- 142-3p expression was examined in NPC specimens and nasopharyngitis biopsy samples by quantitative real-time PCR. The biological functions of miR-142-3p were studied using a series of in vitro and in vivo approaches. RESULTS miR-142-3p is over-expressed in NPC tissues and cell lines. Knockdown of miR-142-3p significantly inhibited cell proliferation and cell cycle progression in vitro, and suppressed tumor growth in a mouse model. Suppressor of cytokine signaling 6 (SOCS6) was identified as a direct target of miR-142-3p, and miR- 142-3p down-regulated the expression of SOCS6 by directly binding to its 3′untranslated region (UTR). Knockdown of SOCS6 abrogated the effects of miR-142-3p down-regulation. CONCLUSION These findings indicate that miR-142-3p regulates NPC development by down-regulating SOCS6 expression and suggest that modulation of miR-142-3p expression could be a therapeutic strategy for NPC.
منابع مشابه
Downregulation of HMGB1 by miR-103a-3p Promotes Cell Proliferation, Alleviates Apoptosis and Inflammation in a Cell Model of Osteoarthritis
Background: MiR-103a-3p is a small non-coding RNA and has been reported to be involved in osteogenic proliferation and differentiation, but the role of miR-103a-3p in human osteoarthritis (OA) remains unclear. Objectives: In this study, we aimed to explore its function and molecular target in chondrocytes during OA pathogenesis. Materials an...
متن کاملDysregulated miR-27a-3p promotes nasopharyngeal carcinoma cell proliferation and migration by targeting Mapk10
miRNA-27a-3p is an important regulator of carcinogenesis and other pathological processes. However, its role in laryngeal carcinoma is still unknown. In our previous research, we found that miR-27a-3p expression was upregulated in nasopharyngeal carcinoma (NPC) using a microarray chip. In the present study, we identified miR-27a-3p as an endogenous promoter of metastatic invasion. The expressio...
متن کاملMiR-203a-3p suppresses cell proliferation and metastasis through inhibiting LASP1 in nasopharyngeal carcinoma
BACKGROUND miR-203a-3p was reported as a tumor suppressor and disregulated in many malignancies including nasopharyngeal carcinoma (NPC). However, its function in tumor growth and metastasis in NPC has rarely been reported. METHODS The expression level of miR-203a-3p in human NPC tissues and cell lines was detected via real-time PCR (RT-PCR). Cell proliferation, migration and invasion were as...
متن کاملmiR-92a promotes hepatocellular carcinoma cells proliferation and invasion by FOXA2 targeting
Objective(s): MicroRNAs (miRNAs) are considered as powerful, post-transcriptional regulators of gene expression in hepatocellular carcinoma cells (HCC). However, the function of miR-92a is still unclear in HCC. Materials and Methods: Expression of miR-92a in human HCC cell lines was evaluated using qRT-PCR. MTT assay and transwell assay were used to examine the function of miR-92a in HepG2 and ...
متن کاملDownregulation of TMEM40 by miR-138-5p suppresses cell proliferation and mobility in clear cell renal cell carcinoma
Background: Clear cell renal cell carcinoma (ccRCC) represents approximately 70% of RCC,as the most frequent histological subtype of RCC. MiR-138-5p, a tumor-related microRNA (miRNA), has been reported to be implicated in the diverse types of human malignancies, but its role in ccRCCremains unclear. Objective: The study was designed to investigate the function...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology
دوره 36 5 شماره
صفحات -
تاریخ انتشار 2015