D-modules and Characters of Semisimple Lie Groups
نویسندگان
چکیده
A famous theorem of Harish-Chandra asserts that all invariant eigendistributions on a semisimple Lie group are locally integrable functions. We show that this result and its extension to symmetric pairs are consequences of an algebraic property of a holonomic D-module defined by Hotta and Kashiwara.
منابع مشابه
Category O for Quantum Groups
In this paper we study the BGG-categories Oq associated to quantum groups. We prove that many properties of the ordinary BGG-category O for a semisimple complex Lie algebra carry over to the quantum case. Of particular interest is the case when q is a complex root of unity. Here we prove a tensor decomposition for both simple modules, projective modules, and indecomposable tilting modules. Usin...
متن کاملOn Semi-artinian Weakly Co-semisimple Modules
We show that every semi-artinian module which is contained in a direct sum of finitely presented modules in $si[M]$, is weakly co-semisimple if and only if it is regular in $si[M]$. As a consequence, we observe that every semi-artinian ring is regular in the sense of von Neumann if and only if its simple modules are $FP$-injective.
متن کاملDuality, Central Characters, and Real-valued Characters of Finite Groups of Lie Type
We prove that the duality operator preserves the Frobenius–Schur indicators of characters of connected reductive groups of Lie type with connected center. This allows us to extend a result of D. Prasad which relates the Frobenius–Schur indicator of a regular real-valued character to its central character. We apply these results to compute the Frobenius–Schur indicators of certain real-valued, i...
متن کاملACTION OF SEMISIMPLE ISOMERY GROUPS ON SOME RIEMANNIAN MANIFOLDS OF NONPOSITIVE CURVATURE
A manifold with a smooth action of a Lie group G is called G-manifold. In this paper we consider a complete Riemannian manifold M with the action of a closed and connected Lie subgroup G of the isometries. The dimension of the orbit space is called the cohomogeneity of the action. Manifolds having actions of cohomogeneity zero are called homogeneous. A classic theorem about Riemannian manifolds...
متن کاملPicard–lefschetz Theory and Characters of a Semisimple Lie Group
The paper applies Picard-Lefschetz theory to the distribution characters of infinite dimensional representations of semisimple Lie groups and analyzes their asymptotic behavour at the identity.
متن کامل