Emergy assessment of a wheat-maize rotation system with different water assignments in the north China plain.

نویسندگان

  • Shi Hu
  • Xingguo Mo
  • Zhonghui Lin
  • Jianxiu Qiu
چکیده

Sustainable water use is seriously compromised in the North China Plain (NCP) due to the huge water requirements of agriculture, the largest use of water resources. An integrated approach which combines the ecosystem model with emergy analysis is presented to determine the optimum quantity of irrigation for sustainable development in irrigated cropping systems. Since the traditional emergy method pays little attention to the dynamic interaction among components of the ecological system and dynamic emergy accounting is in its infancy, it is hard to evaluate the cropping system in hypothetical situations or in response to specific changes. In order to solve this problem, an ecosystem model (Vegetation Interface Processes (VIP) model) is introduced for emergy analysis to describe the production processes. Some raw data, collected by investigating or observing in conventional emergy analysis, may be calculated by the VIP model in the new approach. To demonstrate the advantage of this new approach, we use it to assess the wheat-maize rotation cropping system at different irrigation levels and derive the optimum quantity of irrigation according to the index of ecosystem sustainable development in NCP. The results show, the optimum quantity of irrigation in this region should be 240-330 mm per year in the wheat system and no irrigation in the maize system, because with this quantity of irrigation the rotation crop system reveals: best efficiency in energy transformation (transformity = 6.05E + 4 sej/J); highest sustainability (renewability = 25%); lowest environmental impact (environmental loading ratio = 3.5) and the greatest sustainability index (Emergy Sustainability Index = 0.47) compared with the system in other irrigation amounts. This study demonstrates that application of the new approach is broader than the conventional emergy analysis and the new approach is helpful in optimizing resources allocation, resource-savings and maintaining agricultural sustainability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characteristics of water consumption in water-saving winter wheat and effects on the utilization of subsequent summer rainfall in the North China Plain

Winter wheat (Triticum aestivum L.) grows in dry season but summer maize (Zea mays L.) coincides with rainfall in the North China Plain (NCP). Increasing rainfall use efficiency and harmonizing its utilization between the two species is an effective way to mitigate impact on groundwater deriving from wheat irrigation. One to four times water supply (W1, to W4) were employed in wheat, three wate...

متن کامل

Impact of spatial-temporal variations of climatic variables on summer maize yield in North China Plain

Summer maize (Zea mays L.) is one of the dominant crops in the North China Plain (NCP). Its growth is greatly influenced by the spatial-temporal variation of climatic variables, especially solar radiation, temperature and rainfall. The WOFOST (version 7.1) model was applied to evaluate the impact of climatic variability on summer maize yields using historical meteorological data from 1961 to 20...

متن کامل

Water Leakage and Nitrate Leaching Characteristics in the Winter Wheat–Summer Maize Rotation System in the North China Plain under Different Irrigation and Fertilization Management Practices

Field experiments were carried out in Huantai County from 2006 to 2008 to evaluate the effects of different nitrogen (N) fertilization and irrigation management practices on water leakage and nitrate leaching in the dominant wheat–maize rotation system in the North China Plain (NCP). Two N fertilization (NF1, the traditional one; NF2, fertilization based on soil testing) and two irrigation (IR1...

متن کامل

Mitigating Groundwater Depletion in North China Plain with Cropping System that Alternate Deep and Shallow Rooted Crops

In the North China Plain, groundwater tables have been dropping at unsustainable rates of 1 m per year due to irrigation of a double cropping system of winter wheat and summer maize. To reverse the trend, we examined whether alternative crop rotations could save water. Moisture contents were measured weekly at 20 cm intervals in the top 180 cm of soil as part of a 12-year field experiment with ...

متن کامل

Irrigation methods affect wheat flag leaf senescence and chlorophyll fluorescence in the North China Plain

The water resource shortage in North China Plain is an increasing threat to the sustainabilityof wheat (Triticum aestivum L.) production. A two-year field experiment was conducted toexamine the effects of two supplemental irrigation (SI) methods on wheat flag leaf senescence,chlorophyll fluorescence and grain yield. The following field treatments were conducted:no irrigation (W0); SI with 60 mm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental management

دوره 46 4  شماره 

صفحات  -

تاریخ انتشار 2010