Drosophila N-cadherin functions in the first stage of the two-stage layer-selection process of R7 photoreceptor afferents.

نویسندگان

  • Chun-Yuan Ting
  • Shinichi Yonekura
  • Phoung Chung
  • Shu-Ning Hsu
  • Hugh M Robertson
  • Akira Chiba
  • Chi-Hon Lee
چکیده

Visual information received from the three types of photoreceptor neurons (R1-R6, R7 and R8) in the fly compound eyes converges to the external part of the medulla neuropil (M1-M6 layers) in a layer-specific fashion: R7 and R8 axons terminate at the M6 and M3 layers, respectively, whereas lamina neurons (L1-L5) relay R1-R6 to multiple medulla layers (M1-M5). Here, we show that during development, R7 and R8 neurons establish layer-specific projections in two separate stages: during the first stage, R7 and R8 axons sequentially target to the R7- and R8-temporary layers, respectively; and at the second stage, R7 and R8 growth cones progress synchronously to their destined layers. Using a set of mutations that delete different afferent subsets or alter R7 connectivity, we defined the mechanism of layer selection. We observed that R8, R7 and L1-L5 afferents target to their temporary layers independently, suggesting that afferent-target, but not afferent-afferent, interactions dictate the targeting specificity. N-cadherin is required in the first stage for R7 growth cones to reach and remain in the R7-temporary layer. The Ncad gene contains three pairs of alternatively spliced exons and encodes 12 isoforms. However, expressing a single Ncad isoform in Ncad mutant R7s is sufficient to rescue mistargeting phenotypes. Furthermore, Ncad isoforms mediate promiscuous heterophilic interactions in an in vitro cell-aggregation assay. We propose that Ncad isoforms do not form an adhesion code; rather, they provide permissive adhesion between R7 growth cones and their temporary targets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adhesive but not signaling activity of Drosophila N-cadherin is essential for target selection of photoreceptor afferents.

Drosophila N-cadherin (CadN) is an evolutionarily conserved, atypical classical cadherin, which has a large complex extracellular domain and a catenin-binding cytoplasmic domain. We have previously shown that CadN regulates target selection of R7 photoreceptor axons. To determine the functional domains of CadN, we conducted a structure-function analysis focusing on its in vitro adhesive activit...

متن کامل

An isoform-specific allele of Drosophila N-cadherin disrupts a late step of R7 targeting.

Drosophila N-cadherin is required for the formation of precise patterns of connections in the fly brain. Alternative splicing is predicted to give rise to 12 N-cadherin isoforms. We identified an N-cadherin allele, N-cad(18Astop), that eliminates the six isoforms containing alternative exon 18A and demonstrate that it strongly disrupts the connections of R7 photoreceptor neurons. During the fir...

متن کامل

N-Cadherin Regulates Target Specificity in the Drosophila Visual System

Using visual behavioral screens in Drosophila, we identified multiple alleles of N-cadherin. Removal of N-cadherin selectively from photoreceptor neurons (R cells) causes deficits in specific visual behaviors that correlate with disruptions in R cell connectivity. These defects include disruptions in the pattern of neuronal connections made by all three classes of R cells (R1-R6, R7, and R8). N...

متن کامل

Filopodial dynamics and growth cone stabilization in Drosophila visual circuit development

Filopodial dynamics are thought to control growth cone guidance, but the types and roles of growth cone dynamics underlying neural circuit assembly in a living brain are largely unknown. To address this issue, we have developed long-term, continuous, fast and high-resolution imaging of growth cone dynamics from axon growth to synapse formation in cultured Drosophila brains. Using R7 photorecept...

متن کامل

Liprin- has LAR-independent functions in R7 photoreceptor axon targeting

In the Drosophila visual system, the color-sensing photoreceptors R7 and R8 project their axons to two distinct layers in the medulla. Loss of the receptor tyrosine phosphatase LAR from R7 photoreceptors causes their axons to terminate prematurely in the R8 layer. Here we identify a null mutation in the Lipringene based on a similar R7 projection defect. Liprinphysically interacts with the inac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 132 5  شماره 

صفحات  -

تاریخ انتشار 2005