Protein-Conjugated Quantum Dots for Detecting Trypsin and Trypsin Inhibitor Through Fluorescence Resonance Energy Transfer
نویسندگان
چکیده
We have developed quantum dot probes for detecting trypsin (Try) and trypsin inhibitor (TI) in aqueous solutions through fluorescence resonance energy transfer (FRET). Green-fluorescent CdTe quantum dots (QDs) served as the energy donors and rhodamine isothiocyanate (RITC) conjugated to bovine serum albumin (BSA-RITC) was the acceptor. By simply mixing the two fluorophores, FRET occurred when BSA-RITC bound to the CdTe QDs; as a result, the fluorescence intensity of the CdTe QDs at 520 nm decreased, while the fluorescence of RITC at 574 nm increased. When Try was used to digest BSA, the FRET efficiency decreased, allowing the detection of Try at concentrations as low as 110 pM. In the presence of TI, the digestion activity of Try was inhibited. As a result, the fluorescence intensity ratio IF574/IF520 of the QD–BSA-RITC solutions in the presence of a constant amount of Try increased upon increasing the concentration of TI; good linearity (R 2 = 0.99) existed over the range 0.3–5.0 nM. The LOD for TI was 250 pM. This simple and costeffective probe was applied to determine the level of spiked TI (1.0 nM) in urine samples; the recoveries (95–110%) suggested low matrix interference and high sensitivity.
منابع مشابه
Efficient Fluorescence Resonance Energy Transfer between Quantum Dots and Gold Nanoparticles Based on Porous Silicon Photonic Crystal for DNA Detection
A novel assembled biosensor was prepared for detecting 16S rRNA, a small-size persistent specific for Actinobacteria. The mechanism of the porous silicon (PS) photonic crystal biosensor is based on the fluorescence resonance energy transfer (FRET) between quantum dots (QDs) and gold nanoparticles (AuNPs) through DNA hybridization, where QDs act as an emission donor and AuNPs serve as a fluoresc...
متن کاملLabel-Free Fluorescent Detection of Trypsin Activity Based on DNA-Stabilized Silver Nanocluster-Peptide Conjugates
Trypsin is important during the regulation of pancreatic exocrine function. The detection of trypsin activity is currently limited because of the need for the substrate to be labeled with a fluorescent tag. A label-free fluorescent method has been developed to monitor trypsin activity. The designed peptide probe consists of six arginine molecules and a cysteine terminus and can be conjugated to...
متن کاملA quantum-dot based protein module for in vivo monitoring of protease activity through fluorescence resonance energy transfer.
Here, we present a new generation of nanoscale probes for in vivo monitoring of protease activity by fluorescence resonance energy transfer (FRET). The approach is based on a genetically programmable protein module carrying a fluorescently labeled, protease-specific sequence that can self-assemble onto quantum dots. The protein module was used for real-time detection of human immunodeficiency v...
متن کاملThe Effect of TiO2-Nanoparticle on the Activity and Stability of Trypsin in Aqueous Medium
Trypsin (E.C.3.4.21.4) is a serine protease commonly used in proteomics for digestion of proteins. In the present study, the effect of nano-TiO2 on the conformation and catalytic activity of trypsin were studied. The thermal denaturation of trypsin has been investigated in the presence and absence of nano-TiO2 over the temperature range (293-373 K) at pH 3.0 and 7.25, using temperature scanning...
متن کاملA new FRET nanoprobe for trypsin using a bridged β-cyclodextrin dimer-dye complex and its biological imaging applications.
A new self-assembly nanoprobe, mercaptoethylamine-modified-gold nanoparticles-Lysine-bridged-bis(β-cyclodextrins)-fluorescein (MGNPs-Lys-bis(β-CDs)-FL), based on fluorescence resonance energy transfer (FRET) was developed for determination of trypsin firstly in biological systems. With the Lys-bis(β-CDs)-FL complex as an energy donor and mercaptoethylamine (MEA)-modified gold nanoparticles (MGN...
متن کامل