Bayesian Inference and Markov Chain Monte Carlo Methods Applied to Streamflow Forecasting
نویسندگان
چکیده
In this work we propose a Bayesian approach for the parameter estimation problem of stochastic autoregressive models of order p, AR(p), applied to the streamflow forecasting problem. Procedures for model selection, forecasting and robustness evaluation through Monte Carlo Markov Chain (MCMC) simulation techniques are also presented. The proposed approach is compared with the classical one by Box-Jenkins (maximum likelihood estimation) on a monthly streamflow time series from Furnas reservoir. We conclude that the use of Bayesian statistics and MCMC simulation gives more flexibility and powerful results than those obtained from the classical approach.
منابع مشابه
Spatial count models on the number of unhealthy days in Tehran
Spatial count data is usually found in most sciences such as environmental science, meteorology, geology and medicine. Spatial generalized linear models based on poisson (poisson-lognormal spatial model) and binomial (binomial-logitnormal spatial model) distributions are often used to analyze discrete count data in which spatial correlation is observed. The likelihood function of these models i...
متن کاملA Disease Outbreak Prediction Model Using Bayesian Inference: A Case of Influenza
Introduction: One major problem in analyzing epidemic data is the lack of data and high dependency among the available data, which is due to the fact that the epidemic process is not directly observable. Methods: One method for epidemic data analysis to estimate the desired epidemic parameters, such as disease transmission rate and recovery rate, is data ...
متن کاملRecent Advances in Semiparametric Bayesian Function Estimation
Common nonparametric curve tting methods such as spline smooth ing local polynomial regression and basis function approaches are now well devel oped and widely applied More recently Bayesian function estimation has become a useful supplementary or alternative tool for practical data analysis mainly due to breakthroughs in computerintensive inference via Markov chain Monte Carlo simulation This ...
متن کامل- 1 - a Bayesian Time - Series Model for Short - Term Traffic Flow Forecasting
The Seasonal Autoregressive Integrated Moving Average (SARIMA) model is one of the popular univariate time-series models in the field of short-term traffic flow forecasting. The parameters of the SARIMA model are commonly estimated using classical (maximum likelihood estimate and/or least square estimate) methods. In this paper, instead of using classical inference the Bayesian method is employ...
متن کاملA Bayesian Networks Approach to Reliability Analysis of a Launch Vehicle Liquid Propellant Engine
This paper presents an extension of Bayesian networks (BN) applied to reliability analysis of an open gas generator cycle Liquid propellant engine (OGLE) of launch vehicles. There are several methods for system reliability analysis such as RBD, FTA, FMEA, Markov Chains, and etc. But for complex systems such as LV, they are not all efficiently applicable due to failure dependencies between compo...
متن کامل