Warm fish with cold hearts: thermal plasticity of excitation-contraction coupling in bluefin tuna.
نویسندگان
چکیده
Bluefin tuna have a unique physiology. Elevated metabolic rates coupled with heat exchangers enable bluefin tunas to conserve heat in their locomotory muscle, viscera, eyes and brain, yet their hearts operate at ambient water temperature. This arrangement of a warm fish with a cold heart is unique among vertebrates and can result in a reduction in cardiac function in the cold despite the elevated metabolic demands of endothermic tissues. In this study, we used laser scanning confocal microscopy and electron microscopy to investigate how acute and chronic temperature change affects tuna cardiac function. We examined the temporal and spatial properties of the intracellular Ca2+ transient (Δ[Ca2+]i) in Pacific bluefin tuna (Thunnus orientalis) ventricular myocytes at the acclimation temperatures of 14°C and 24°C and at a common test temperature of 19°C. Acute (less than 5 min) warming and cooling accelerated and slowed the kinetics of Δ[Ca2+]i, indicating that temperature change limits cardiac myocyte performance. Importantly, we show that thermal acclimation offered partial compensation for these direct effects of temperature. Prolonged cold exposure (more than four weeks) increased the amplitude and kinetics of Δ[Ca2+]i by increasing intracellular Ca2+ cycling through the sarcoplasmic reticulum (SR). These functional findings are supported by electron microscopy, which revealed a greater volume fraction of ventricular SR in cold-acclimated tuna myocytes. The results indicate that SR function is crucial to the performance of the bluefin tuna heart in the cold. We suggest that SR Ca2+ cycling is the malleable unit of cellular Ca2+ flux, offering a mechanism for thermal plasticity in fish hearts. These findings have implications beyond endothermic fish and may help to delineate the key steps required to protect vertebrate cardiac function in the cold.
منابع مشابه
Effects of temperature acclimation on Pacific bluefin tuna (Thunnus orientalis) cardiac transcriptome.
Little is known about the mechanisms underpinning thermal plasticity of vertebrate hearts. Bluefin tuna hearts offer a unique model to investigate processes underlying thermal acclimation. Their hearts, while supporting an endothermic physiology, operate at ambient temperature, and are presented with a thermal challenge when migrating to different thermal regimes. Here, we examined the molecula...
متن کاملWarm fish with cold hearts: thermal plasticity of excitation
(2452 articles) ecology (110 articles) cellular biology (217 articles) systems biology Articles on similar topics can be found in the following collections Email alerting service here right-hand corner of the article or click Receive free email alerts when new articles cite this article-sign up in the box at the top Bluefin tuna have a unique physiology. Elevated metabolic rates coupled with he...
متن کاملThe Effect of Thermal Acclimation on Action Potentials and Sarcolemmal K Channels from Pacific Bluefin Tuna Cardiomyocytes
To sustain cardiac muscle contractility relatively independent of temperature, some fish species are capable of temporarily altering excitation-contraction (E-C) coupling processes to meet the demands of their environment. The Pacific bluefin tuna, Thunnus orientalis, is a partially endothermic fish that inhabits a wide range of thermal niches. The present study examined the effects of temperat...
متن کاملEffect of thermal acclimation on action potentials and sarcolemmal K+ channels from Pacific bluefin tuna cardiomyocytes.
To sustain cardiac muscle contractility relatively independent of temperature, some fish species are capable of temporarily altering excitation-contraction coupling processes to meet the demands of their environment. The Pacific bluefin tuna, Thunnus orientalis, is a partially endothermic fish that inhabits a wide range of thermal niches. The present study examined the effects of temperature an...
متن کاملCardiac function in an endothermic fish: cellular mechanisms for overcoming acute thermal challenges during diving.
Understanding the physiology of vertebrate thermal tolerance is critical for predicting how animals respond to climate change. Pacific bluefin tuna experience a wide range of ambient sea temperatures and occupy the largest geographical niche of all tunas. Their capacity to endure thermal challenge is due in part to enhanced expression and activity of key proteins involved in cardiac excitation-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings. Biological sciences
دوره 278 1702 شماره
صفحات -
تاریخ انتشار 2011