Synaptotagmin-Mediated Bending of the Target Membrane Is a Critical Step in Ca2+-Regulated Fusion
نویسندگان
چکیده
Decades ago it was proposed that exocytosis involves invagination of the target membrane, resulting in a highly localized site of contact between the bilayers destined to fuse. The vesicle protein synaptotagmin-I (syt) bends membranes in response to Ca(2+), but whether this drives localized invagination of the target membrane to accelerate fusion has not been determined. Previous studies relied on reconstituted vesicles that were already highly curved and used mutations in syt that were not selective for membrane-bending activity. Here, we directly address this question by utilizing vesicles with different degrees of curvature. A tubulation-defective syt mutant was able to promote fusion between highly curved SNARE-bearing liposomes but exhibited a marked loss of activity when the membranes were relatively flat. Moreover, bending of flat membranes by adding an N-BAR domain rescued the function of the tubulation-deficient syt mutant. Hence, syt-mediated membrane bending is a critical step in membrane fusion.
منابع مشابه
Ca2+-Dependent Synaptotagmin Binding to SNAP-25 Is Essential for Ca2+-Triggered Exocytosis
Synaptotagmin is a proposed Ca2+ sensor on the vesicle for regulated exocytosis and exhibits Ca2+-dependent binding to phospholipids, syntaxin, and SNAP-25 in vitro, but the mechanism by which Ca2+ triggers membrane fusion is uncertain. Previous studies suggested that SNAP-25 plays a role in the Ca2+ regulation of secretion. We found that synaptotagmins I and IX associate with SNAP-25 during Ca...
متن کاملFusion Pore Dynamics Are Regulated by Synaptotagmin•t-SNARE Interactions
Exocytosis involves the formation of a fusion pore that connects the lumen of secretory vesicles with the extracellular space. Exocytosis from neurons and neuroendocrine cells is tightly regulated by intracellular [Ca2+] and occurs rapidly, but the molecular events that mediate the opening and subsequent dilation of fusion pores remain to be determined. A putative Ca2+ sensor for release, synap...
متن کاملReconstitution of Ca2+-regulated membrane fusion by synaptotagmin and SNAREs.
We investigated the effect of synaptotagmin I on membrane fusion mediated by neuronal SNARE proteins, SNAP-25, syntaxin, and synaptobrevin, which were reconstituted into vesicles. In the presence of Ca2+, the cytoplasmic domain of synaptotagmin I (syt) strongly stimulated membrane fusion when synaptobrevin densities were similar to those found in native synaptic vesicles. The Ca2+ dependence of...
متن کاملHow synaptotagmin promotes membrane fusion.
Synaptic vesicles loaded with neurotransmitters are exocytosed in a soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-dependent manner after presynaptic depolarization induces calcium ion (Ca2+) influx. The Ca2+ sensor required for fast fusion is synaptotagmin-1. The activation energy of bilayer-bilayer fusion is very high (approximately 40 k(B)T). We found that, in ...
متن کاملSynaptotagmin C2B Domain Regulates Ca2+-triggered Fusion in Vitro
Synaptotagmin (syt) 1 is localized to synaptic vesicles, binds Ca2+, and regulates neuronal exocytosis. Syt 1 harbors two Ca2+-binding motifs referred to as C2A and C2B. In this study we examine the function of the isolated C2 domains of Syt 1 using a reconstituted, SNARE (soluble N-ethylmaleimide-sensitive factor attachment receptor)-mediated, fusion assay. We report that inclusion of phosphat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 138 شماره
صفحات -
تاریخ انتشار 2009