Finite thickness and charge relaxation in double-layer interactions.
نویسندگان
چکیده
We extend the classical Gouy-Chapman model of two planar parallel interacting double layers, which is used as a first approximation to describe the force between colloidal particles, by considering the finite thickness of the colloids. The formation of two additional double layers due to this finite thickness modifies the interaction force compared to the Gouy-Chapman case, in which the colloids are semi-infinite objects. In this paper we calculate this interaction force and some other size-dependent properties using a mean-field level of description, based on the Poisson-Boltzmann (PB) equation. We show that in the case of finite-size colloids, this equation can be set in a closed form depending on the geometrical parameters and on their surface charge. The corresponding linear (Debye-Hückel) theory and the well-known results for semi-infinite colloids are recovered from this formal solution after appropriate limits are taken. We use a density functional corresponding to the PB level of description to show how in the case where the total colloidal charge is fixed, it redistributes itself on their surfaces to minimize the energy of the system depending on the aforementioned parameters. We study how this charge relaxation affects the colloidal interactions.
منابع مشابه
Impact of Layout Sequence of the Natural and Synthetic Adsorbents in Double-Layered Composites on Improving the Natural Fiber Acoustic Performance Using the Numerical Finite Element Method
Introduction: The acoustic performance of natural fiber adsorbents has been investigated in numerous studies. A part of these materials show a poor adsorption within the frequency range of less than 1000 Hz. In the present study, attempts were made to investigate the effect of layout sequence of double-layered composites consisting of natural and synthetic fibers on improving the acoustic adsor...
متن کاملOn the Dynamic Characteristic of Thermoelastic Waves in Thermoelastic Plates with Thermal Relaxation Times
In this paper, analysis for the propagation of general anisotropic media of finite thickness with two thermal relaxation times is studied. Expression of displacements, temperature, thermal stresses, and thermal gradient for most general anisotropic thermoelastic plates of finite thickness are obtained in the analysis. The calculation is then carried forward for slightly more specialized case of...
متن کاملCharged cylindrical surfaces: effect of finite ion size.
A simple statistical mechanical approach is applied to calculate the profile of the density of the number of particles and the profile of the electrostatic potential of an electric double layer formed by a charged cylindrical surface in contact with electrolyte solution. The finite size of particles constituting the electrolyte solution is considered by including the excluded volume effect with...
متن کاملEffects of Finite Layer Thickness on the Differential Capacitance of Electron Bilayers
We have calculated the effects of finite thickness on electron or hole layers in double-quantum-well systems. In particular, we apply our model to calculate the Eisenstein ratio and the interlayer capacitance of a biased bilayer device; these are direct measures of the compressibility of the charge carriers in the layers. We show that our model agrees well with the experimental layer-occupancy ...
متن کاملA comprehensive study of velocity overshoot effects in double gate silicon on insulator transistors
A comprehensive study of velocity overshoot in double gate silicon on insulator (DGSOI) transistors has been undertaken. Monte Carlo simulations were performed to clarify the dependence of velocity overshoot effects on the low field mobility, channel inversion charge and silicon layer thickness. The relationships and dependences between the energyand momentum-relaxation times were also investig...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of colloid and interface science
دوره 301 1 شماره
صفحات -
تاریخ انتشار 2006