The Orbifold Quantum Cohomology of C/z3 and Hurwitz-hodge Integrals

نویسنده

  • R. PANDHARIPANDE
چکیده

Let Z3 act on C 2 by non-trivial opposite characters. Let X = [C/Z3] be the orbifold quotient, and let Y be the unique crepant resolution. We show the equivariant genus 0 Gromov-Witten potentials FX and F Y are equal after a change of variables — verifying the Crepant Resolution Conjecture for the pair (X , Y ). Our computations involve Hodge integrals on trigonal Hurwitz spaces which are of independent interest. In a self contained Appendix, we derive closed formulas for these Hurwitz-Hodge integrals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Orbifold Quantum Cohomology of C/z3 and Hurwitz-hodge Integrals

Let Z3 act on C by non-trivial opposite characters. Let X = [C/Z3] be the orbifold quotient, and let Y be the unique crepant resolution. We show the equivariant genus 0 Gromov-Witten potentials FX and F are equal after a change of variables — verifying the Crepant Resolution Conjecture for the pair (X , Y ). Our computations involve Hodge integrals on trigonal Hurwitz spaces which are of indepe...

متن کامل

A Relative Riemann-hurwitz Theorem, the Hurwitz-hodge Bundle, and Orbifold Gromov-witten Theory

We provide a formula describing the G-module structure of the Hurwitz-Hodge bundle for admissible G-covers in terms of the Hodge bundle of the base curve, and more generally, for describing the G-module structure of the push-forward to the base of any sheaf on a family of admissible Gcovers. This formula can be interpreted as a representation-ring-valued relative Riemann-Hurwitz formula for fam...

متن کامل

Hodge Structures for Orbifold Cohomology

We construct a polarized Hodge structure on the primitive part of Chen and Ruan’s orbifold cohomology Hk orb(X) for projective SL-orbifolds X satisfying a “Hard Lefschetz Condition”. Furthermore, the total cohomology ⊕ p,q H p,q orb(X) forms a mixed Hodge structure that is polarized by every element of the Kähler cone of X. Using results of Cattani-Kaplan-Schmid this implies the existence of an...

متن کامل

Generating Functions for Hurwitz-Hodge Integrals

In this paper we describe explicit generating functions for a large class of Hurwitz-Hodge integrals. These are integrals of tautological classes on moduli spaces of admissible covers, a (stackily) smooth compactification of the Hurwitz schemes. Admissible covers and their tautological classes are interesting mathematical objects on their own, but recently they have proved to be a useful tool f...

متن کامل

Hodge-type integrals on moduli spaces of admissible covers

Hodge integrals are a class of intersection numbers on moduli spaces of curves involving the tautological classes λi, which are the Chern classes of the Hodge bundle E. In recent years Hodge integrals have shown a great amount of interconnections with Gromov-Witten theory and enumerative geometry. The classical Hurwitz numbers, counting the numbers of ramified Covers of a curve with an assigned...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008