Mortal Multi-Armed Bandits

نویسندگان

  • Deepayan Chakrabarti
  • Ravi Kumar
  • Filip Radlinski
  • Eli Upfal
چکیده

We formulate and study a new variant of the k-armed bandit problem, motivated by e-commerce applications. In our model, arms have (stochastic) lifetime after which they expire. In this setting an algorithm needs to continuously explore new arms, in contrast to the standard k-armed bandit model in which arms are available indefinitely and exploration is reduced once an optimal arm is identified with nearcertainty. The main motivation for our setting is online-advertising, where ads have limited lifetime due to, for example, the nature of their content and their campaign budgets. An algorithm needs to choose among a large collection of ads, more than can be fully explored within the typical ad lifetime. We present an optimal algorithm for the state-aware (deterministic reward function) case, and build on this technique to obtain an algorithm for the state-oblivious (stochastic reward function) case. Empirical studies on various reward distributions, including one derived from a real-world ad serving application, show that the proposed algorithms significantly outperform the standard multi-armed bandit approaches applied to these settings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modal Bandits

Analyses of multi-armed bandits primarily presume that the value of an arm is its expected reward. We introduce a theory for multi-armed bandits where the values are the modes of the reward distributions.

متن کامل

Generic Exploration and K-armed Voting Bandits

We study a stochastic online learning scheme with partial feedback where the utility of decisions is only observable through an estimation of the environment parameters. We propose a generic pure-exploration algorithm, able to cope with various utility functions from multi-armed bandits settings to dueling bandits. The primary application of this setting is to offer a natural generalization of ...

متن کامل

The Epoch-Greedy Algorithm for Contextual Multi-armed Bandits

We present Epoch-Greedy, an algorithm for contextual multi-armed bandits (also known as bandits with side information). Epoch-Greedy has the following properties: 1. No knowledge of a time horizon T is necessary. 2. The regret incurred by Epoch-Greedy is controlled by a sample complexity bound for a hypothesis class. 3. The regret scales asO(T S) or better (sometimes, much better). Here S is th...

متن کامل

Semi-Bandits with Knapsacks

We unify two prominent lines of work on multi-armed bandits: bandits with knapsacks and combinatorial semi-bandits. The former concerns limited “resources” consumed by the algorithm, e.g., limited supply in dynamic pricing. The latter allows a huge number of actions but assumes combinatorial structure and additional feedback to make the problem tractable. We define a common generalization, supp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008