A Bernstein theorem for complete spacelike constant mean curvature hypersurfaces in Minkowski space
نویسندگان
چکیده
We obtain a gradient estimate for the Gauss maps from complete spacelike constant mean curvature hypersurfaces in Minkowski space into the hyperbolic space. As applications, we prove a Bernstein theorem which says that if the image of the Gauss map is bounded from one side, then the spacelike constant mean curvature hypersurface must be linear. This result extends the previous theorems obtained by B. Palmer [Pa] and Y.L. Xin [Xin1] where they assume that the image of the Gauss map is bounded. We also proved a Bernstein theorem for spacelike complete surfaces with parallel mean curvature vector in four-dimensional spaces.
منابع مشابه
$L_k$-biharmonic spacelike hypersurfaces in Minkowski $4$-space $mathbb{E}_1^4$
Biharmonic surfaces in Euclidean space $mathbb{E}^3$ are firstly studied from a differential geometric point of view by Bang-Yen Chen, who showed that the only biharmonic surfaces are minimal ones. A surface $x : M^2rightarrowmathbb{E}^{3}$ is called biharmonic if $Delta^2x=0$, where $Delta$ is the Laplace operator of $M^2$. We study the $L_k$-biharmonic spacelike hypersurfaces in the $4$-dimen...
متن کاملSpacelike hypersurfaces with constant $S$ or $K$ in de Sitter space or anti-de Sitter space
Let $M^n$ be an $n(ngeq 3)$-dimensional complete connected and oriented spacelike hypersurface in a de Sitter space or an anti-de Sitter space, $S$ and $K$ be the squared norm of the second fundamental form and Gauss-Kronecker curvature of $M^n$. If $S$ or $K$ is constant, nonzero and $M^n$ has two distinct principal curvatures one of which is simple, we obtain some charact...
متن کاملA sharp height estimate for compact spacelike hypersurfaces with constant r-mean curvature in the Lorentz–Minkowski space and application
In this paper we obtain a sharp height estimate concerning compact spacelike hypersurfaces Σn immersed in the (n + 1)dimensional Lorentz–Minkowski space Ln+1 with some nonzero constant r-mean curvature, and whose boundary is contained into a spacelike hyperplane of Ln+1. Furthermore, we apply our estimate to describe the nature of the end of a complete spacelike hypersurface of Ln+1. © 2007 Els...
متن کاملInterior Estimates and Longtime Solutions for Mean Curvature Flow of Noncompact Spacelike Hypersurfaces in Minkowski Space
Spacelike hypersurfaces with prescribed mean curvature have played a major role in the study of Lorentzian manifolds Maximal mean curvature zero hypersurfaces were used in the rst proof of the positive mass theorem Constant mean curvature hypersurfaces provide convenient time gauges for the Einstein equations For a survey of results we refer to In and it was shown that entire solutions of the m...
متن کاملS ep 2 01 4 MINKOWSKI FORMULAE AND ALEXANDROV THEOREMS IN SPACETIME
The classical Minkowski formula is extended to spacelike codimension-two submanifolds in spacetimes which admit “hidden symmetry” from conformal KillingYano two-forms. As an application, we obtain an Alexandrov type theorem for spacelike codimension-two submanifolds in a static spherically symmetric spacetime: a codimensiontwo submanifold with constant normalized null expansion (null mean curva...
متن کامل