Rates of intron loss and gain: implications for early eukaryotic evolution.
نویسندگان
چکیده
We study the intron-exon structures of 684 groups of orthologs from seven diverse eukaryotic genomes and provide maximum likelihood estimates for rates and numbers of intron losses and gains in these same genes for a variety of lineages. Rates of intron loss vary from approximately 2 x 10(-9) to 2 x 10(-10) per year. Rates of gain vary from 6 x 10(-13) to 4 x 10(-12) per possible intron insertion site per year. There is an inverse correspondence between rates of intron loss and gain, leading to a 20-fold variation among lineages in the ratio of the rates of the two processes. The observed rates of intron gain are insufficient to explain the large number of introns estimated to have been present in the plant-animal ancestor, suggesting that introns present in early eukaryotes may have been created by a fundamentally different process than more recently gained introns.
منابع مشابه
The role of reverse transcriptase in intron gain and loss mechanisms.
Intron density is highly variable across eukaryotic species. It seems that different lineages have experienced considerably different levels of intron gain and loss events, but the reasons for this are not well known. A large number of mechanisms for intron loss and gain have been suggested, and most of them have at least some level of indirect support. We therefore figured out that the variabi...
متن کاملLoss of Chloroplast trnLUAA Intron in Two Species of Hedysarum (Fabaceae): Evolutionary Implications
Previous studies have indicated that in all land plants examined to date, the chloroplast gene trnLUAA isinterrupted by a single group I intron ranging from 250 to over 1400 bp. The parasitic Epifagus virginiana haslost, however, the entire gene. We report that the intron is missing from the chloroplast genome of twoarctic species of the legume genus Hedysarum (H. alpinum, H. ...
متن کاملAn Expectation-Maximization Algorithm for Analysis of Evolution of Exon-Intron Structure of Eukaryotic Genes
We propose a detailed model of evolution of exon-intron structure of eukaryotic genes that takes into account gene-specific intron gain and loss rates, branch-specific gain and loss coefficients, invariant sites incapable of intron gain, and rate variability of both gain and loss which is gamma-distributed across sites. We develop an expectationmaximization algorithm to estimate the parameters ...
متن کاملPatterns of intron loss and gain in plants: intron loss-dominated evolution and genome-wide comparison of O. sativa and A. thaliana.
Numerous previous studies have elucidated 2 surprising patterns of spliceosomal intron evolution in diverse eukaryotes over the past roughly 100 Myr. First, rates of recent intron gain in a wide variety of eukaryotic lineages have been surprisingly low, far too low to explain modern intron densities. Second, intron losses have outnumbered intron gains over a variety of lineages. For several rea...
متن کاملEvolutionary dynamics of introns in plastid-derived genes in plants: saturation nearly reached but slow intron gain continues.
Some of the principal transitions in the evolution of eukaryotes are characterized by engulfment of prokaryotes by primitive eukaryotic cells. In particular, approximately 1.6 billion years ago, engulfment of a cyanobacterium that became the ancestor of chloroplasts and other plastids gave rise to Plantae, the major branch of eukaryotes comprised of glaucophytes, red algae, green algae, and gre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 102 16 شماره
صفحات -
تاریخ انتشار 2005