Localization of ATP-gated P2X receptor immunoreactivity in rat sensory and sympathetic ganglia.
نویسندگان
چکیده
The distribution of P2X1, P2X2, P2X3, P2X4, P2X5 and P2X6 receptors, a family of ATP-gated cation channels, in rat trigeminal, dorsal root, nodose, superior cervical, and coeliac ganglia was studied immunohistochemically. It was found that polyclonal antibodies for the six P2X receptor subtypes could label over 90% of neurones in these ganglia to different intensities. There was also considerable variation in intensity of immunoreactivity in individual neurones within each ganglion. In dorsal root and trigeminal ganglia expression of the P2X3 receptor was much higher than for the other five subtypes. P2X3 immunoreactivity was much more intense in the small-diameter neurones than in the large-diameter neurones. In nodose ganglion, both P2X2 and P2X3 antibodies labelled the neurones intensely. In sympathetic superior cervical and coeliac ganglia, immunoreactivity to five P2X receptor subtypes were detected (exception, P2X5), with P2X2, P2X4 and P2X6 showing higher intensity. Low level expression of P2X3 receptor in sympathetic ganglia indicates that this receptor subtype is not limited to the sensory ganglia where it was highly expressed. The results have demonstrated that both sensory and sympathetic ganglia express a variety of P2X receptor subtypes and that different subtypes are expressed to different levels and by different subpopulations of neurones.
منابع مشابه
Localization of P2X3 receptors and coexpression with P2X2 receptors during rat embryonic neurogenesis.
It is well known that extracellular ATP mediates rapid excitatory signaling by means of the ionotropic P2X receptors. One of its subunits, the P2X(3) receptor, is well documented to be associated with sensory innervation in adult animals. It is speculated that the P2X(3) receptor may have already been present in the early sensory system. The aim of this study was to investigate the distribution...
متن کاملPii: S0301-0082(01)00005-3
P2X receptors are a family of ligand-gated ion channels, activated by extracellular ATP. The seven subunits cloned (P2X1–7) can assemble to form homomeric and heteromeric receptors. Peripheral neurons of neural crest origin (e.g. those in dorsal root, trigeminal, sympathetic and enteric ganglia) and placodal origin (e.g. those in nodose and petrosal ganglia) express mRNAs for multiple P2X subun...
متن کاملDevelopmental changes in heteromeric P2X(2/3) receptor expression in rat sympathetic ganglion neurons.
We have used whole cell patch clamp recording and immunohistochemistry to investigate the expression of P2X(2/3) receptors in rat superior cervical ganglion neurons during late embryonic and early post-natal development. Neurons from E18 and P1 animals responded to the nicotinic agonist dimethylphenylpiperazinium (DMPP), and the purinoceptor agonists ATP and alpha,beta-meATP with sustained inwa...
متن کاملIntraepithelial vagal sensory nerve terminals in rat pulmonary neuroepithelial bodies express P2X(3) receptors.
The neurotransmitters/modulators involved in the interaction between pulmonary neuroepithelial bodies (NEBs) and the vagal sensory component of their innervation have not yet been elucidated. Because P2X(3) purinoreceptors are known to be strongly expressed in peripheral sensory neurons, the aim of the present study was to examine the localization of nerve endings expressing P2X(3) purinorecept...
متن کاملP2X(2), P2X(2-2) and P2X(5) receptor subunit expression and function in rat thoracolumbar sympathetic neurons.
The present study investigated the pharmacological properties of excitatory P2X receptors and P2X(2) and P2X(5) receptor subunit expression in rat-cultured thoracolumbar sympathetic neurons. In patch-clamp recordings, ATP (3-1000 microM; applied for 1 s) induced inward currents in a concentration-dependent manner. Pyridoxal-phosphate-6-azophenyl-2',4'-disulfonate (PPADS; 30 microM) counteracted...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuroscience letters
دوره 256 2 شماره
صفحات -
تاریخ انتشار 1998