A generalized Taylor factorization for Hermite subdivision schemes

نویسندگان

  • Jean-Louis Merrien
  • Tomas Sauer
چکیده

In a recent paper, we investigated factorization properties of Hermite subdivision schemes by means of the so–called Taylor factorization. This decomposition is based on a spectral condition which is satisfied for example by all interpolatory Hermite schemes. Nevertheless, there exist examples of Hermite schemes, especially some based on cardinal splines, which fail the spectral condition. For these schemes (and others) we provide the concept of an generalized Taylor factorization and show how it can be used to obtain convergence criteria for the Hermite scheme by means of factorization and contractivity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hermite Subdivision Schemes and Taylor Polynomials

We propose a general study of the convergence of a Hermite subdivision scheme H of degree d > 0 in dimension 1. This is done by linking Hermite subdivision schemes and Taylor polynomials and by associating a so-called Taylor subdivision (vector) scheme S. The main point of investigation is a spectral condition. If the subdivision scheme of the finite differences of S is contractive, then S is C...

متن کامل

From Hermite to stationary subdivision schemes in one and several variables

Vector and Hermite subdivision schemes both act on vector data, but since the latter one interprets the vectors as function values and consecutive derivatives they differ by the “renormalization” of the Hermite scheme in any step. In this paper we give an algebraic factorization method in one and several variables to relate any Hermite subdivision scheme that satisfies the so–called spectral co...

متن کامل

Hermite-interpolatory subdivision schemes

Stationary interpolatory subdivision schemes for Hermite data that consist of function values and first derivatives are examined. A general class of Hermite-interpolatory subdivision schemes is proposed, and some of its basic properties are stated. The goal is to characterise and construct certain classes of nonlinear (and linear) Hermite schemes. For linear Hermite subdivision, smoothness cond...

متن کامل

Noninterpolatory Hermite subdivision schemes

Bivariate interpolatory Hermite subdivision schemes have recently been applied to build free-form subdivision surfaces. It is well known to geometric modelling practitioners that interpolatory schemes typically lead to “unfair” surfaces—surfaces with unwanted wiggles or undulations—and noninterpolatory (a.k.a. approximating in the CAGD community) schemes are much preferred in geometric modellin...

متن کامل

Analysis of Hermite interpolatory subdivision schemes

The theory of matrix subdivision schemes provides tools for the analysis of general uniform stationary matrix schemes The special case of Hermite interpolatory subdivision schemes deals with re nement algorithms for the function and the derivatives values with matrix masks depending upon the re nement level i e non stationary matrix masks Here we rst show that a Hermite interpolatory subdivisio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Computational Applied Mathematics

دوره 236  شماره 

صفحات  -

تاریخ انتشار 2011