On the Weyl Tensor of a Self-dual Complex 4-manifold

نویسنده

  • FLORIN ALEXANDRU BELGUN
چکیده

We study complex 4-manifolds with holomorphic self-dual conformal structures, and we obtain an interpretation of the Weyl tensor of such a manifold as the projective curvature of a field of cones on the ambitwistor space. In particular, its vanishing is implied by the existence of some compact, simply-connected, null-geodesics. We also relate the Cotton-York tensor of an umbilic hypersurface to the Weyl tensor of the ambient. As a consequence, a conformal 3-manifold or a self-dual 4-manifold admitting a rational curve as a null-geodesic is conformally flat. We show that the projective structure of the β-surfaces of a selfdual manifold is flat.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conformal mappings preserving the Einstein tensor of Weyl manifolds

In this paper, we obtain a necessary and sufficient condition for a conformal mapping between two Weyl manifolds to preserve Einstein tensor. Then we prove that some basic curvature tensors of $W_n$ are preserved by such a conformal mapping if and only if the covector field of the mapping is locally a gradient. Also, we obtained the relation between the scalar curvatures of the Weyl manifolds r...

متن کامل

Ricci tensor for $GCR$-lightlike submanifolds of indefinite Kaehler manifolds

We obtain the expression of Ricci tensor for a $GCR$-lightlikesubmanifold of indefinite complex space form and discuss itsproperties on a totally geodesic $GCR$-lightlike submanifold of anindefinite complex space form. Moreover, we have proved that everyproper totally umbilical $GCR$-lightlike submanifold of anindefinite Kaehler manifold is a totally geodesic $GCR$-lightlikesubmanifold.

متن کامل

Connected Sums of Self-dual Manifolds and Equivariant Relative Smoothings

Recall that a conformal 4-manifold is called self-dual if its Weyl curvature, considered as a bundle valued 2-form, is in the +1 eigenspace of the Hodge star-operator [1]. Due to Schoen’s proof [19] of the Yamabe conjecture it is known that within any conformal class on a compact manifold is a metric whose scalar curvature is constant and the sign of this constant is a conformal invariant. The ...

متن کامل

Moving Frames on the Twistor Space of Self-dual Positive Einstein 4-manifolds

The twistor space Z of self-dual positive Einstein manifolds naturally admits two 1-parameter families of Riemannian metrics, one is the family of canonical deformation metrics and the other is the family introduced by B. Chow and D. Yang in [C-Y]. The purpose of this paper is to compare these two families. In particular we compare the Ricci tensor and the behavior under the Ricci flow of these...

متن کامل

On the Converse of Weyl’s Conformal and Projective Theorems

This note investigates the possibility of converses of the Weyl theorems that two conformally related metrics on a manifold have the same Weyl conformal tensor and that two projectively related connections on a manifold have the same Weyl projective tensor. It shows that, in all relevant cases, counterexamples to each of Weyl’s theorems exist except for his conformal theorem in the 4-dimensiona...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000