Practical quantum private query of blocks based on unbalanced-state Bennett-Brassard-1984 quantum-key-distribution protocol

نویسندگان

  • Chun-Yan Wei
  • Fei Gao
  • Qiao-Yan Wen
  • Tian-Yin Wang
چکیده

Until now, the only kind of practical quantum private query (QPQ), quantum-key-distribution (QKD)-based QPQ, focuses on the retrieval of a single bit. In fact, meaningful message is generally composed of multiple adjacent bits (i.e., a multi-bit block). To obtain a message a1a2···al from database, the user Alice has to query l times to get each ai. In this condition, the server Bob could gain Alice's privacy once he obtains the address she queried in any of the l queries, since each a(i) contributes to the message Alice retrieves. Apparently, the longer the retrieved message is, the worse the user privacy becomes. To solve this problem, via an unbalanced-state technique and based on a variant of multi-level BB84 protocol, we present a protocol for QPQ of blocks, which allows the user to retrieve a multi-bit block from database in one query. Our protocol is somewhat like the high-dimension version of the first QKD-based QPQ protocol proposed by Jacobi et al., but some nontrivial modifications are necessary.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simple proof of security of the BB84 quantum key distribution protocol

We prove that the 1984 protocol of Bennett and Brassard (BB84) for quantum key distribution is secure. We first give a key distribution protocol based on entanglement purification, which can be proven secure using methods from Lo and Chau's proof of security for a similar protocol. We then show that the security of this protocol implies the security of BB84. The entanglement purification based ...

متن کامل

A high-speed multi-protocol quantum key distribution transmitter based on a dual-drive modulator.

We propose a novel source based on a dual-drive modulator that is adaptable and allows Alice to choose between various practical quantum key distribution (QKD) protocols depending on what receiver she is communicating with. Experimental results show that the proposed transmitter is suitable for implementation of the Bennett and Brassard 1984 (BB84), coherent one-way (COW) and differential phase...

متن کامل

Heralded single photon sources for QKD applications

Single photon sources (SPS) are a fundamental building block for optical implementations of quantum information protocols. Among SPSs, multiple crystal heralded single photon sources seem to give the best compromise between high pair production rate and low multiple photon events. In this work, we study their performance in a practical quantum key distribution experiment, by evaluating the achi...

متن کامل

Experimental realization of equiangular three-state quantum key distribution

Quantum key distribution using three states in equiangular configuration combines a security threshold comparable with the one of the Bennett-Brassard 1984 protocol and a quantum bit error rate (QBER) estimation that does not need to reveal part of the key. We implement an entanglement-based version of the Renes 2004 protocol, using only passive optic elements in a linear scheme for the positiv...

متن کامل

Six-qubit permutation-based decoherence-free orthogonal basis

There is a natural orthogonal basis of the 6-qubit decoherence-free (DF) space robust against collective noise. Interestingly, most of the basis states can be obtained from one another just permuting qubits. This property: (a) is useful for encoding qubits in DF subspaces, (b) allows the implementation of the Bennett-Brassard 1984 (BB84) protocol in DF subspaces just permuting qubits, which com...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014