Adaptive Learning Rate for Online Linear Discriminant Classifiers

نویسندگان

  • Ludmila I. Kuncheva
  • Catrin O. Plumpton
چکیده

We propose a strategy for updating the learning rate parameter of online linear classifiers for streaming data with concept drift. The change in the learning rate is guided by the change in a running estimate of the classification error. In addition, we propose an online version of the standard linear discriminant classifier (O-LDC) in which the inverse of the common covariance matrix is updated using the Sherman-MorrisonWoodbury formula. The adaptive learning rate was applied to four online linear classifier models on generated and real streaming data with concept drift. O-LDC was found to be better than balanced Winnow, the perceptron and a recently proposed online linear discriminant analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Separable Linear Discriminant Classification

Linear discriminant analysis is a popular technique in computer vision, machine learning and data mining. It has been successfully applied to various problems, and there are numerous variations of the original approach. This paper introduces the idea of separable LDA. Towards the problem of binary classification for visual object recognition, we derive an algorithm for training separable discri...

متن کامل

Optimal adaptive leader-follower consensus of linear multi-agent systems: Known and unknown dynamics

In this paper, the optimal adaptive leader-follower consensus of linear continuous time multi-agent systems is considered. The error dynamics of each player depends on its neighbors’ information. Detailed analysis of online optimal leader-follower consensus under known and unknown dynamics is presented. The introduced reinforcement learning-based algorithms learn online the approximate solution...

متن کامل

Comparison of 14 different families of classification algorithms on 115 binary datasets

We tested 14 very different classification algorithms (random forest, gradient boosting machines, SVM linear, polynomial, and RBF 1-hidden-layer neural nets, extreme learning machines, k-nearest neighbors and a bagging of knn, naive Bayes, learning vector quantization, elastic net logistic regression, sparse linear discriminant analysis, and a boosting of linear classifiers) on 115 real life bi...

متن کامل

Self-Supervised Learning for Object Recognition based on Kernel Discriminant-EM Algorithm

In Proc. of IEEE Int’l Conf. on Computer Vision, Vancouver, Canada, 2001 It is often tedious and expensive to label large training data sets for learning-based object recognition systems. This problem could be alleviated by selfsupervised learning techniques, which take a hybrid of labeled and unlabeled training data to learn classifiers. Discriminant-EM (D-EM) proposed a framework for such tas...

متن کامل

دو روش تبدیل ویژگی مبتنی بر الگوریتم های ژنتیک برای کاهش خطای دسته بندی ماشین بردار پشتیبان

Discriminative methods are used for increasing pattern recognition and classification accuracy. These methods can be used as discriminant transformations applied to features or they can be used as discriminative learning algorithms for the classifiers. Usually, discriminative transformations criteria are different from the criteria of  discriminant classifiers training or  their error. In this ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008