A product version of the Erdős-Ko-Rado theorem

نویسنده

  • Norihide Tokushige
چکیده

Let F1, . . . ,Fr ⊂ ([n] k ) be r-cross t-intersecting, that is, |F1 ∩ ·· · ∩Fr| ≥ t holds for all F1 ∈ F1, . . . ,Fr ∈ Fr. We prove that for every p,μ ∈ (0,1) there exists r0 such that for all r > r0, all t with 1 ≤ t < (1/p− μ)r−1/(1− p)−1, there exist n0 and ε so that if n > n0 and |k/n− p|< ε , then |F1| · · · |Fr| ≤ (n−t k−t )r .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Degree versions of the Erdős-Ko-Rado theorem and Erdős hypergraph matching conjecture

We use an algebraic method to prove a degree version of the celebrated Erdős-Ko-Rado theorem: given n > 2k, every intersecting k-uniform hypergraph H on n vertices contains a vertex that lies on at most ( n−2 k−2 ) edges. This result implies the Erdős-Ko-Rado Theorem as a corollary. It can also be viewed as a special case of the degree version of a well-known conjecture of Erdős on hypergraph m...

متن کامل

Towards a Katona Type Proof for the 2-intersecting Erdos-Ko-Rado Theorem

We study the possibility of the existence of a Katona type proof for the Erdős-Ko-Rado theorem for 2and 3-intersecting families of sets. An Erdős-Ko-Rado type theorem for 2-intersecting integer arithmetic progressions and a model theoretic argument show that such an approach works in the 2-intersecting case.

متن کامل

Elementary Techniques for Erdős–Ko–Rado-like Theorems

The well-known Erdős–Ko–Rado Theorem states that if F is a family of k-element subsets of {1, 2, . . . , n} (n ≥ 2k) satisfying S, T ∈ F ⇒ |S ∩ T | ≥ 1, then |F| ≤ ( n−1 k−1 ) . The theorem also provides necessary and sufficient conditions for attaining the maximum. We present elementary methods for deriving generalizations of the Erdős– Ko–Rado Theorem on several classes of combinatorial objec...

متن کامل

Intersecting Families of Separated Sets

A set A ⊆ {1, 2, . . . , n} is said to be k-separated if, when considered on the circle, any two elements of A are separated by a gap of size at least k. We prove a conjecture due to Holroyd and Johnson [3],[4] that an analogue of the Erdős-Ko-Rado theorem holds for k-separated sets. In particular the result holds for the vertex-critical subgraph of the Kneser graph identified by Schrijver [7],...

متن کامل

A degree version of the Hilton-Milner theorem

An intersecting family of sets is trivial if all of its members share a common element. Hilton and Milner proved a strong stability result for the celebrated Erdős–Ko–Rado theorem: when n > 2k, every non-trivial intersecting family of k-subsets of [n] has at most (n−1 k−1 ) − (n−k−1 k−1 ) + 1 members. One extremal family HMn,k consists of a k-set S and all k-subsets of [n] containing a fixed el...

متن کامل

A p-part Erdős-Ko-Rado theorem

We prove a p-part extension of the Erdős-Ko-Rado Theorem and suggest several related open problems. For the basic case of two parts we describe two proofs, a combinatorial one and a spectral one.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. A

دوره 118  شماره 

صفحات  -

تاریخ انتشار 2011