ETO-2 associates with SCL in erythroid cells and megakaryocytes and provides repressor functions in erythropoiesis.
نویسندگان
چکیده
Lineage specification and cellular maturation require coordinated regulation of gene expression programs. In large part, this is dependent on the activator and repressor functions of protein complexes associated with tissue-specific transcriptional regulators. In this study, we have used a proteomic approach to characterize multiprotein complexes containing the key hematopoietic regulator SCL in erythroid and megakaryocytic cell lines. One of the novel SCL-interacting proteins identified in both cell types is the transcriptional corepressor ETO-2. Interaction between endogenous proteins was confirmed in primary cells. We then showed that SCL complexes are shared but also significantly differ in the two cell types. Importantly, SCL/ETO-2 interacts with another corepressor, Gfi-1b, in red cells but not megakaryocytes. The SCL/ETO-2/Gfi-1b association is lost during erythroid differentiation of primary fetal liver cells. Genetic studies of erythroid cells show that ETO-2 exerts a repressor effect on SCL target genes. We suggest that, through its association with SCL, ETO-2 represses gene expression in the early stages of erythroid differentiation and that alleviation/modulation of the repressive state is then required for expression of genes necessary for terminal erythroid maturation to proceed.
منابع مشابه
HEMATOPOIESIS AND STEM CELLS SCL and associated proteins distinguish active from repressive GATA transcription factor complexes
GATA-1 controls hematopoietic development by activating and repressing gene transcription, yet the in vivo mechanisms that specify these opposite activities are unknown. By examining the composition of GATA-1–associated protein complexes in a conditional erythroid rescue system as well as through the use of tiling arrays we detected the SCL/TAL1, LMO2, Ldb1, E2A complex at all positively acting...
متن کاملSCL and associated proteins distinguish active from repressive GATA transcription factor complexes.
GATA-1 controls hematopoietic development by activating and repressing gene transcription, yet the in vivo mechanisms that specify these opposite activities are unknown. By examining the composition of GATA-1-associated protein complexes in a conditional erythroid rescue system as well as through the use of tiling arrays we detected the SCL/TAL1, LMO2, Ldb1, E2A complex at all positively acting...
متن کاملGATA-1 forms distinct activating and repressive complexes in erythroid cells.
GATA-1 is essential for the generation of the erythroid, megakaryocytic, eosinophilic and mast cell lineages. It acts as an activator and repressor of different target genes, for example, in erythroid cells it represses cell proliferation and early hematopoietic genes while activating erythroid genes, yet it is not clear how both of these functions are mediated. Using a biotinylation tagging/pr...
متن کاملA requirement for Lim domain binding protein 1 in erythropoiesis
During erythrocyte development, the nuclear cofactor Lim domain binding protein 1 (Ldb1) functions as a core subunit of multiprotein DNA binding complexes that include the transcription factors Scl and Gata-1 and the Lim-only adapter Lmo2. Scl, Gata-1, and Lmo2 are each required for erythropoiesis, suggesting that Ldb1-nucleated transcription complexes regulate key steps during erythropoiesis. ...
متن کاملDistinct, strict requirements for Gfi-1b in adult bone marrow red cell and platelet generation
The zinc finger transcriptional repressor Gfi-1b is essential for erythroid and megakaryocytic development in the embryo. Its roles in the maintenance of bone marrow erythropoiesis and thrombopoiesis have not been defined. We investigated Gfi-1b's adult functions using a loxP-flanked Gfi-1b allele in combination with a novel doxycycline-inducible Cre transgene that efficiently mediates recombin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular and cellular biology
دوره 25 23 شماره
صفحات -
تاریخ انتشار 2005