Estimating Daily Global Evapotranspiration Using Penman-Monteith Equation and Remotely Sensed Land Surface Temperature

نویسندگان

  • Roozbeh Raoufi
  • Edward Beighley
چکیده

Daily evapotranspiration (ET) is modeled globally for the period 2000–2013 based on the Penman–Monteith equation with radiation and vapor pressures derived using remotely sensed Land Surface Temperature (LST) from the MODerate resolution Imaging Spectroradiometer (MODIS) on the Aqua and Terra satellites. The ET for a given land area is based on four surface conditions: wet/dry and vegetated/non-vegetated. For each, the ET resistance terms are based on land cover, leaf area index (LAI) and literature values. The vegetated/non-vegetated fractions of the land surface are estimated using land cover, LAI, a simplified version of the Beer–Lambert law for describing light transition through vegetation and newly derived light extension coefficients for each MODIS land cover type. The wet/dry fractions of the land surface are nonlinear functions of LST derived humidity calibrated using in-situ ET measurements. Results are compared to in-situ measurements (average of the root mean squared errors and mean absolute errors for 39 sites are 0.81 mm day−1 and 0.59 mm day−1, respectively) and the MODIS ET product, MOD16, (mean bias during 2001–2013 is −0.2 mm day−1). Although the mean global difference between MOD16 and ET estimates is only 0.2 mm day−1, local temperature derived vapor pressures are the likely contributor to differences, especially in energy and water limited regions. The intended application for the presented model is simulating ET based on long-term climate forecasts (e.g., using only minimum, maximum and mean daily or monthly temperatures).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of M5 Model Tree and Artificial Neural Network for Estimating Potential Evapotranspiration in Semi-arid Climates

Evaporation is a fundamental parameter in the hydrological cycle. This study examines the performance of M5model tree and artificial neural network (ANN) models in estimating potential evapotranspiration calculated byPenman- Monteith and Hargreaves- Samani equations. Daily weather data from two meteorological stations in asemi-arid climate of Iran, namely Kerman and Zahedan, were collected duri...

متن کامل

Comparison of different empirical methods for estimating ddaily reference evapotranspiration in the humid cold climate (case study: Borujen, Shahrekord, Koohrang and Lordegan)

The proposed method for calculation of potential evapotranspiration is Penman-Monteith FAO method, but there are other methods that require less meteorological data but estimates close to the FAO Penman-Monteith method in different climatic conditions.  Performance evaluation of these methods on the same basis is prerequisite for selecting an alternative approach in accordance with available da...

متن کامل

Comparison of Artificial Neural Network and Physically Based Models for Estimating of Reference Evapotranspiration in Greenhouse

Evapotranspiration (ET) is one of the major components of hydrologic cycle. Accurate estimation of this parameter is essential for studies such as water balance, irrigation system design and management, and water resources management. Generally we used climate data for calculating evapotranspiration from indirect methods. This study investigates the utility of artificial neural networks (ANNs) ...

متن کامل

Combining the Penman-Monteith equation with measurements of surface temperature and reflectance to estimate evaporation rates of semiarid grassland

The Penman-Monteith equation is useful for computing evaporation rates of uniform surfaces, such as dense vegetation or bare soil. This equation becomes less useful for evaluation of evaporation rates at the regional scale, where surfaces are generally characterized by a patchy combination of vegetation and soil. This is particularly true in the arid and semi-arid regions of the world. The appr...

متن کامل

Estimation of Daily Evapotranspiration by Three-temperatures Model at Large Catchment Scale

Three-temperatures model (3T model) was a recently proposed algorithm, which could be used to estimate actual evapotranspiration (ET) and evaluate environmental quality. The key parameters included are air temperature, land surface temperature and reference land temperature. Compared with other conventional ET estimation algorithms, site-specific parameters, such as surface resistance and aerod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017