Periodic mechanical stress stimulates the FAK mitogenic signal in rat chondrocytes through ERK1/2 activity.
نویسندگان
چکیده
BACKGROUND/AIMS The biological effects of periodic mechanical stress on chondrocytes have been studied extensively over the past few years. However, the mechanisms underlying chondrocyte mechanosensing and signaling in response to periodic mechanical stress remain to be determined. In the current study, we examined the effects of focal adhesion kinase (FAK) signaling on periodic mechanical stress-induced chondrocyte proliferation and matrix synthesis. METHODS AND RESULTS Periodic mechanical stress significantly induced sustained phosphorylation of FAK at Tyr(397) and Tyr(576/577). Reduction of FAK with targeted shRNA via transfection of NH2-terminal tyrosine phosphorylation-deficient FAK mutant Y397F or Y576F-Y577F abolished periodic mechanical stress-induced chondrocyte proliferation and matrix synthesis, accompanied by attenuated ERK1/2 phosphorylation. However, activation of Src, PLCγ1 and Rac1 was not prevented upon FAK suppression. Furthermore, pretreatment with the Src-selective inhibitor, PP2, and shRNA targeted to Src or suppression of Rac1 with its selective inhibitor, NSC23766, blocked FAK phosphorylation at Tyr,(576/577) but not Tyr,(397) under periodic mechanical stress. Interestingly, FAK phosphorylation neither at Tyr(397) nor at Tyr(576/577) was affected by PLCγ1 depletion when periodic mechanical stress was applied. In addition, Tyr(397) and Tyr(576/577) phosphorylation levels were reduced upon pretreatment with a blocking antibody against integrin β1 under conditions of periodic mechanical stress. CONCLUSION Our findings collectively suggest that periodic mechanical stress promotes chondrocyte proliferation and matrix synthesis through at least two pathways, integrin β1-Src-Rac1-FAK(Tyr(576/577))-ERK1/2 and integrin β1-FAK (Tyr(397))-ERK1/2.
منابع مشابه
Periodic mechanical stress activates MEK1/2-ERK1/2 mitogenic signals in rat chondrocytes through Src and PLCγ1.
The mitogenic effects of periodic mechanical stress on chondrocytes have been studied extensively but the mechanisms whereby chondrocytes sense and respond to periodic mechanical stress remain a matter of debate. We explored the signal transduction pathways of chondrocyte proliferation and matrix synthesis under periodic mechanical stress. In particular, we sought to identify the role of the ME...
متن کاملPeriodic Mechanical Stress Activates PKCδ-Dependent EGFR Mitogenic Signals in Rat Chondrocytes via PI3K-Akt and ERK1/2.
BACKGROUND/AIMS The present study aimed to analyze the mechanisms by which periodic mechanical stress is translated into biochemical signals, and to verify the important role of signaling molecules including phosphatidylinositol-3-kinase (PI3K)-Akt, protein kinase C (PKC), and epidermal growth factor receptor (EGFR) in chondrocyte proliferation. The effects of periodic mechanical stress on the ...
متن کاملHydrostatic Compress Force Enhances the Viability and Decreases the Apoptosis of Condylar Chondrocytes through Integrin-FAK-ERK/PI3K Pathway
Reduced mechanical stimuli in many pathological cases, such as hemimastication and limited masticatory movements, can significantly affect the metabolic activity of mandibular condylar chondrocytes and the growth of mandibles. However, the molecular mechanisms for these phenomena remain unclear. In this study, we hypothesized that integrin-focal adhesion kinase (FAK)-ERK (extracellular signal-r...
متن کاملSrc and focal adhesion kinase mediate mechanical strain-induced proliferation and ERK1/2 phosphorylation in human H441 pulmonary epithelial cells.
Pulmonary epithelial cells are exposed to repetitive deformation during physiological breathing and mechanical ventilation. Such deformation may influence pulmonary growth, development, and barotrauma. Although deformation stimulates proliferation and activates extracellular signal-regulated kinases (ERK1/2) in human pulmonary epithelial H441 cells, the upstream mechanosensors that induce ERK a...
متن کاملStatic Mechanical Stress Induces Apoptosis in Rat Endplate Chondrocytes through MAPK and Mitochondria-Dependent Caspase Activation Signaling Pathways
Mechanical stress has detrimental effects on cartilaginous endplate chondrocytes due to apoptosis in vivo and in vitro. In this study, we investigated the possible apoptosis signaling pathways induced by mechanical stress in cultured rat cervical endplate chondrocytes. Static mechanical load significantly reduced cell viability in a time- and load-dependent manner, as demonstrated by the Cell C...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology
دوره 32 4 شماره
صفحات -
تاریخ انتشار 2013