Multi-phase Modelling of Violent Hydrodynamics using SPH

نویسنده

  • Athanasios Mokos
چکیده

SPH is a relatively new, rapidly evolving Lagrangian meshless method that is currently being applied in a large variety of cases, ranging from astrophysics to nuclear engineering. However, most of these cases have been treated so far as single phase cases, therefore limiting both the accuracy of the method and the range of cases that can be solved and importantly the physics captured. However, several models have been developed in recent years, allowing SPH to model multi-phase flows. This study is mainly focused in two-phase flows that include the interaction of two fluids: air and water which have a large density ratio of 1:1000. Understanding the interactions between them is essential for a large number of engineering cases, such as wave breaking as shown in Figure 1, fuel tank sloshing and dam break. Two distinct test cases have been selected for this project, both including interactions between water and air. In order to model them, we have selected the model of Colagrossi and Landrini (2003), which, despite being fairly simple has been extensively tested by Rogers et al. (2009), producing sufficiently accurate results. Modelling and testing has been done so far in Fortran, but the focus will soon shift to GPU programming, as this will allow us to model cases in a fraction of the time that CPU programming requires, enabling us to target larger scale cases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Incompressible SPH method based on Rankine source solution for violent water wave simulation

With wide applications, the smoothed particle hydrodynamics method (abbreviated as SPH) has become an important numerical tool for solving complex flows, in particular those with a rapidly moving free surface. For such problems, the incompressible Smoothed Particle Hydrodynamics (ISPH) has been shown to yield better and more stable pressure time histories than the traditional SPH by many papers...

متن کامل

A Multi-phase Chemo-dynamical Sph Code for Galaxy Evolution. Testing the Code

In this paper we present some test results of our newly developed Multi-Phase Chemo-Dynamical Smoothed Particle Hydrodynamics (MP-CD-SPH) code for galaxy evolution. At first, we present a test of the “pure” hydro SPH part of the code. Then we describe and test the multi-phase description of the gaseous components of the interstellar matter. In this second part we also compare our condensation a...

متن کامل

Simulation of Cold Rolling Process Using Smoothed Particle Hydrodynamics (SPH)

Regarding the reported capabilities and the simplifications of the smoothed particle hydrodynamics (SPH) method, as a mesh-free technique in numerical simulations of the deformation processes, a 2-D approach on cold rolling process was provided. Using and examining SPH on rolling process not only caused some minor developments on SPH techniques but revealed some physical realities. The chosen t...

متن کامل

Improved SPH for Simulating Violent Flow and Fixed Body Interaction

With the improvement of Smoothed Particle Hydrodynamic (SPH), it has become one of most vigorous methods for breaking wave simulation. Recently we have developed an improved SPH method for simulating violent flow and wave impact to different angle slopes. The main features of the new method include the incompressible SPH method based the incompressible Poisson equation, and it also gives a new ...

متن کامل

CHEMO – DYNAMICAL EVOLUTION OF DISK GALAXIES, SMOOTHED PARTICLES HYDRODYNAMICS APPROACH Chemo – Dynamical SPH code

A new Chemo – Dynamical Smoothed Particle Hydrodynamic (CD – SPH) code is presented. The disk galaxy is described as a multi – fragmented gas and star system, embedded into the cold dark matter halo. The star formation (SF) process, SNII, SNIa and PN events as well as chemical enrichment of gas have been considered within the framework of standard SPH model. Using this model we try to describe ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011