Detection of Escherichia coli O157 by peptide nucleic acid fluorescence in situ hybridization (PNA-FISH) and comparison to a standard culture method.
نویسندگان
چکیده
Despite the emergence of non-O157 Shiga toxin-producing Escherichia coli (STEC) infections, E. coli serotype O157 is still the most commonly identified STEC in the world. It causes high morbidity and mortality and has been responsible for a number of outbreaks in many parts of the world. Various methods have been developed to detect this particular serotype, but standard bacteriological methods remain the gold standard. Here, we propose a new peptide nucleic acid fluorescence in situ hybridization (PNA-FISH) method for the rapid detection of E. coli O157. Testing on 54 representative strains showed that the PNA probe is highly sensitive and specific to E. coli O157. The method then was optimized for detection in food samples. Ground beef and unpasteurized milk samples were artificially contaminated with E. coli O157 concentrations ranging from 1 × 10(-2) to 1 × 10(2) CFU per 25 g or ml of food. Samples were then preenriched and analyzed by both the traditional bacteriological method (ISO 16654:2001) and PNA-FISH. The PNA-FISH method performed well in both types of food matrices with a detection limit of 1 CFU/25 g or ml of food samples. Tests on 60 food samples have shown a specificity value of 100% (95% confidence interval [CI], 82.83 to 100), a sensitivity of 97.22% (95% CI, 83.79 to 99.85%), and an accuracy of 98.33% (CI 95%, 83.41 to 99.91%). Results indicate that PNA-FISH performed as well as the traditional culture methods and can reduce the diagnosis time to 1 day.
منابع مشابه
Cellular Morphology and Immunologic Properties of Escherichia coli Treated With Antimicrobial Antisense Peptide Nucleic Acid
Background & Objectives: Antisense peptide nucleic acids (PNA) that target growth essential genes show potent bactericidal properties without cell lysis. We considered the possibility that whether PNA treatment influence the bacteria total nucleic acids content and apply approach to develop a new delivery system to Dendritic cells (DCs). DCs are the most potent antigen presenting cells in th...
متن کاملDetection of viable Yersinia pestis by fluorescence in situ hybridization using peptide nucleic acid probes.
A successful method has been developed for the detection of live Yersinia pestis, the plague bacillus, which incorporates nascent RNA synthesis. A fluorescent in situ hybridization (FISH) assay using peptide nucleic acid (PNA) probes was developed specifically to differentiate Y. pestis strains from closely related bacteria. PNA probes were chosen to target high copy mRNA of the Y. pestis caf1 ...
متن کاملEvaluation of Peptide Nucleic Acid Probe-Based Fluorescence In Situ Hybridization for the Detection of Mycobacterium tuberculosis Complex and Nontuberculous Mycobacteria in Clinical Respiratory Specimens
Background: Tuberculosis is globally the most important cause of death from single pathogen. Rapid and accurate identification of mycobacteria is essential for the control of tuberculosis. We evaluated a fluorescence in situ hybridization (FISH) method using peptide nucleic acid (PNA) probes for the differentiation of Mycobacterium tuberculosis complex (MTB) and nontuberculous mycobacteria (NTM...
متن کاملDiagnosis of bacterial vaginosis by a new multiplex peptide nucleic acid fluorescence in situ hybridization method
Bacterial vaginosis (BV) is one of most common vaginal infections. However, its diagnosis by classical methods reveals low specificity. Our goal was to evaluate the accuracy diagnosis of 150 vaginal samples with research gold standard methods and our Peptide Nucleic Acid (PNA) probes by Fluorescence in situ Hybridization (FISH) methodology. Also, we described the first PNA-FISH methodology for ...
متن کاملA novel detection method for Escherichia coli O157 by Peptide Nucleic Acid array
E. coli O157 is responsible for a number of human infections through the consumption of foods of animal origin, particularly those originating from cattle. Food poisoning by Escherichia coli O157 causes diarrhea, bloody stools and abdominal pain in humans, and may lead to severe kidney failure or brain injury. For these reasons, E. coli O157 has been the subject of increasingly stringent intern...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 79 20 شماره
صفحات -
تاریخ انتشار 2013