Denser Egyptian Fractions

نویسنده

  • GREG MARTIN
چکیده

An Egyptian fraction is a sum of reciprocals of distinct positive integers, so called because the ancient Egyptians represented rational numbers in that way. In an earlier paper, the author [8] showed that every positive rational number r has Egyptian fraction representations where the number of terms is of the same order of magnitude as the largest denominator. More precisely, there exists a positive constant C(r) such that for every x that is sufficiently large in terms of r, there is a set E of positive integers not exceeding x with ∑

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

. N T ] 8 A pr 1 99 8 DENSE EGYPTIAN FRACTIONS

Every positive rational number has representations as Egyptian fractions (sums of reciprocals of distinct positive integers) with arbitrarily many terms and with arbitrarily large denominators. However, such representations normally use a very sparse subset of the positive integers up to the largest denominator. We show that for every positive rational there exist representations as Egyptian fr...

متن کامل

Egyptian Fractions Revisited

It is well known that the ancient Egyptians represented each fraction as a sum of unit fractions – i.e., fractions with unit numerators; this is how they, e.g., divided loaves of bread. What is not clear is why they used this representation. In this paper, we propose a new explanation: crudely speaking, that the main idea behind the Egyptian fractions provides an optimal way of dividing the loa...

متن کامل

Egyptian Fractions with Each Denominator Having Three Distinct Prime Divisors

Any natural number can be expressed as an Egyptian fraction, i.e., P 1/ai with a1 < a2 < · · · < a`, where each denominator is the product of three distinct primes.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998