Mobile Robot Navigation Using Reinforcement Learning Based on Neural Network with Short Term Memory
نویسندگان
چکیده
In this paper we propose a novel bio-inspired model of a mobile robot navigation system. The novelty of our work consists in combining short term memory and online neural network learning using history of events stored in this memory. The neural network is trained with a modified error back propagation algorithm that utilizes reward and punishment principal while interacting with the environment.
منابع مشابه
Navigation of a Mobile Robot Using Virtual Potential Field and Artificial Neural Network
Mobile robot navigation is one of the basic problems in robotics. In this paper, a new approach is proposed for autonomous mobile robot navigation in an unknown environment. The proposed approach is based on learning virtual parallel paths that propel the mobile robot toward the track using a multi-layer, feed-forward neural network. For training, a human operator navigates the mobile robot in ...
متن کاملDynamic Obstacle Avoidance by Distributed Algorithm based on Reinforcement Learning (RESEARCH NOTE)
In this paper we focus on the application of reinforcement learning to obstacle avoidance in dynamic Environments in wireless sensor networks. A distributed algorithm based on reinforcement learning is developed for sensor networks to guide mobile robot through the dynamic obstacles. The sensor network models the danger of the area under coverage as obstacles, and has the property of adoption o...
متن کاملSelf-learning navigation algorithm for vision-based mobile robots using machine learning algorithms
Many mobile robot navigation methods use, among others, laser scanners, ultrasonic sensors, vision cameras for detecting obstacles and following paths. However, humans use only visual (e.g. eye) information for navigation. In this paper, we propose a mobile robot control method based on machine learning algorithms which use only camera vision. To efficiently define the state of the robot from r...
متن کاملStability of Learning in the ARBIB Autonomous Robot
We have previously described the ARBIB autonomous robot which consists of a mobile platform running a neural network simulator. Unlike most other behaving robots, the neural system is biologically-inspired and operates at the level of individual spikes. Rather than using currently-popular reinforcement learning techniques, ARBIB learns from exposure to its environment via low-level mechanisms o...
متن کاملPrediction of Covid-19 Prevalence and Fatality Rates in Iran Using Long Short-Term Memory Neural Network
Introduction: The rapid spread of COVID-19 has become a critical threat to the world. So far, millions of people worldwide have been infected with the disease. The Covid-19 pandemic has had significant effects on various aspects of human life. Currently, prediction of the virus's spread is essential in order to be safe and make necessary arrangements. It can help control the rate of its outbrea...
متن کامل