Inference by the m out of n Bootstrap in Nonparametric Frontier Models

نویسندگان

  • Léopold Simar
  • Paul W. Wilson
چکیده

It is well-known that the naive bootstrap yields inconsistent inference in the context of data envelopment analysis (DEA) or free disposal hull (FDH) estimators in nonparametric frontier models. For inference about efficiency of a single, fixed point, drawing bootstrap pseudo-samples of size m < n provides consistent inference, although coverages are quite sensitive to the choice of subsample size m. We provide a probabilistic framework in which these methods are shown to valid for statistics comprised of functions of DEA or FDH estimators. We examine a simple, data-based rule for selecting m suggested by Politis et al. (2001), and provide Monte Carlo evidence on the size and power of our tests. Our methods (i) allow for heterogeneity in the inefficiency process, and unlike previous methods, (ii) do not require multivariate kernel smoothing, and (iii) avoid the need for solutions of intermediate linear programs. Forthcoming, Journal of Productivity Analysis

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bootstrap Confidence Bands for the Autoregression Function

We derive a strong approximation of a local polynomial estimator (LPE) in nonparametric autoregression by an LPE in a corresponding nonparame-tric regression model. This generally suggests the application of regression-typical tools for statistical inference in nonparametric autoregressive models. It provides an important simpliication for the bootstrap method to be used: It is enough to mimic ...

متن کامل

SIEVE QUASI LIKELIHOOD RATIO INFERENCE ON SEMI/NONPARAMETRIC CONDITIONAL MOMENT MODELS By

This paper considers inference on functionals of semi/nonparametric conditional moment restrictions with possibly nonsmooth generalized residuals. These models belong to the difficult (nonlinear) ill-posed inverse problems with unknown operators, and include all of the (nonlinear) nonparametric instrumental variables (IV) as special cases. For these models it is generally difficult to verify wh...

متن کامل

Statistical Topology Using the Nonparametric Density Estimation and Bootstrap Algorithm

This paper presents approximate confidence intervals for each function of parameters in a Banach space based on a bootstrap algorithm. We apply kernel density approach to estimate the persistence landscape. In addition, we evaluate the quality distribution function estimator of random variables using integrated mean square error (IMSE). The results of simulation studies show a significant impro...

متن کامل

Recent Developments in Bootstrap Methodology

Ever since its introduction, the bootstrap has provided both a powerful set of solutions for practical statisticians, and a rich source of theoretical and methodological problems for statistics. In this article, some recent developments in bootstrap methodology are reviewed and discussed. After a brief introduction to the bootstrap, we consider the following topics at varying levels of detail: ...

متن کامل

Measure of firms inefficiency and heterogeneity using Nonparametric frontier Models: The Côte d’Ivoire Case

The objective of this work is to estimate the production frontier and technical efficiency levels of Côte d’Ivoire firms. The methodology used is closely linked to the recent nonparametric frontier models, as for example Cazals, Florens and Simar (2002), Aragon, Daouia and Thomas-Agnan (2003) or Florens and Simar (2001). The main advantage compared to the classical nonparametric methods (DEA, F...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010