Morphology of Ion-Containing Polymers: Correlations Between Structure, Dynamics, and Ion Conduction

نویسندگان

  • Wenqin Wang
  • Karen I. Winey
چکیده

Ion-containing polymers are of intense interest for applications in energy storage and conversion devices. The conductivities of these polymers are determined by both the ion mobility and the total number of mobile charge carriers, which in turn depend on the chemical structure and morphology. To rationally design ioncontaining polymers with high conductivity, a comprehensive understanding of their multi-scale structure is essential. The morphologies of several ion-containing polymers have been explored as a function of material chemistry and external stimuli by X-ray scattering, scanning transmission electron microscopy, and various types of spectroscopy. The fundamental structure-property relationships in ion-containing polymers are discussed. Two classes of ion-containing polymers with very different aggregation behaviors have been studied. The first class is the polystyrene-based ionomers, where there are unfavorable interactions between the polymer matrix and ionic groups. The ionic functional groups in these hydrocarbon-based ionomers self-assemble into ionic aggregates, due to the strong electrostatic interactions in the low dielectric constant matrix and the lack of any solvation interactions between ions and hydrocarbons. The effects of acid content, neutralization level, and cation type on the size, number density, and composition of ionic aggregates were explored. The morphological findings provide a framework for interpreting the dielectric relaxation behaviors of the same ionomers, so as to establish correlations between structure and dynamics. The second class is poly(alkyl oxide)-based ionomers. The ionic groups have favorable interactions with the polymer matrix in poly(ethylene oxide) (PEO)-based polyester ionomers or urethane groups in poly(tetramethylene oxide)-based polyurethane ionomers. The states of ions are highly dependent on the PEO length, cation size and temperature in PEO-based ionomers. Decreasing cation size from Cs to Li results in a transition of ionic states from isolated ion pairs to aggregated ion pairs. As the temperature increases, these ionomers exhibit greater microphase separation of the ionic groups due to the decreased ability of PEO to solvate the ions. These findings combine to greatly advance our understanding of the interplay between morphology and ion conduction in single-ion conductors. Degree Type Dissertation Degree Name Doctor of Philosophy (PhD) Graduate Group Materials Science & Engineering First Advisor Karen I. Winey This dissertation is available at ScholarlyCommons: http://repository.upenn.edu/edissertations/231

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Removal of Heavy Metal Particles by LTJ, ANA, SVR, BEC and MER zeolites particles: A Molecular Dynamics Simulation Study

In present study, molecular dynamics simulation of Cadmium (II), Lead (II) and Copper (II) removal from aqueous electrolyte solutions using the ion-exchange process with the zeolite particles was done. The results showed that, most of the particles had the highest affinity of ion exchanging with Lead (II) and the lowest affinity with Copper (II). The calculated mean ion-exchange ratios showed t...

متن کامل

Electrochemical Characterization of Low-Cost Lithium-Iron Orthosilicate Samples as Cathode Materials of Lithium-Ion Battery

Lithium-iron-orthosilicate is one of the most promising cathode materials for Li-ion batteries due to its safety, environmental brightness and potentially low cost. In order to produce a low cost cathode material, Li2FeSiO4/C samples are synthesized via sol-gel (SG; one sample) and solid state (SS; two samples with different carbon content), starting from Fe (III) in the raw materials (lo...

متن کامل

Preparation, Statistical Optimization and In-vitro Characterization of a Dry Powder Inhaler (DPI) Containing Solid Lipid Nanoparticles Encapsulating Amphotericin B: Ion Paired Complexes with Distearoyl Phosphatidylglycerol

The aim of this study was to prepare dry powder inhalers (DPIs) containing amphotericin B-loaded solid lipid nanoparticles (AMB-SLNs) as an alternative approach for prevention of pulmonary aspergillosis. For solubilizing AMB in small amounts of organic solvents ion paired complexes were firstly formed by establishing electrostatic interaction between AMB and distearoyl phosphatidylglycerol (DSP...

متن کامل

Preparation, Statistical Optimization and In-vitro Characterization of a Dry Powder Inhaler (DPI) Containing Solid Lipid Nanoparticles Encapsulating Amphotericin B: Ion Paired Complexes with Distearoyl Phosphatidylglycerol

The aim of this study was to prepare dry powder inhalers (DPIs) containing amphotericin B-loaded solid lipid nanoparticles (AMB-SLNs) as an alternative approach for prevention of pulmonary aspergillosis. For solubilizing AMB in small amounts of organic solvents ion paired complexes were firstly formed by establishing electrostatic interaction between AMB and distearoyl phosphatidylglycerol (DSP...

متن کامل

Dynamics of K+ ion conduction through Kv1.2.

The crystallographic structure of a potassium channel, Kv1.2, in an open state makes it feasible to simulate entire K(+) ion permeation events driven by a voltage bias and, thereby, elucidate the mechanism underlying ion conduction and selectivity of this type of channel. This Letter demonstrates that molecular dynamics simulations can provide movies of the overall conduction of K(+) ions throu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014