Inverse Kinematics for Upper Limb Compound Movement Estimation in Exoskeleton-Assisted Rehabilitation
نویسندگان
چکیده
Robot-Assisted Rehabilitation (RAR) is relevant for treating patients affected by nervous system injuries (e.g., stroke and spinal cord injury). The accurate estimation of the joint angles of the patient limbs in RAR is critical to assess the patient improvement. The economical prevalent method to estimate the patient posture in Exoskeleton-based RAR is to approximate the limb joint angles with the ones of the Exoskeleton. This approximation is rough since their kinematic structures differ. Motion capture systems (MOCAPs) can improve the estimations, at the expenses of a considerable overload of the therapy setup. Alternatively, the Extended Inverse Kinematics Posture Estimation (EIKPE) computational method models the limb and Exoskeleton as differing parallel kinematic chains. EIKPE has been tested with single DOF movements of the wrist and elbow joints. This paper presents the assessment of EIKPE with elbow-shoulder compound movements (i.e., object prehension). Ground-truth for estimation assessment is obtained from an optical MOCAP (not intended for the treatment stage). The assessment shows EIKPE rendering a good numerical approximation of the actual posture during the compound movement execution, especially for the shoulder joint angles. This work opens the horizon for clinical studies with patient groups, Exoskeleton models, and movements types.
منابع مشابه
Kinematic and Dynamic Analysis of a Lower Limb Exoskeleton
This paper will provide the kinematic and dynamic analysis of a lower limb exoskeleton. The forward and inverse kinematics of proposed exoskeleton is performed using Denevit and Hartenberg method. The torques required for the actuators will be calculated using Lagrangian formulation technique. This research can be used to design the control of the proposed exoskeleton. Keywords—Dynamic Analysis...
متن کاملOptical Enhancement of Exoskeleton-Based Estimation of Glenohumeral Angles
In Robot-Assisted Rehabilitation (RAR) the accurate estimation of the patient limb joint angles is critical for assessing therapy efficacy. In RAR, the use of classic motion capture systems (MOCAPs) (e.g., optical and electromagnetic) to estimate the Glenohumeral (GH) joint angles is hindered by the exoskeleton body, which causes occlusions and magnetic disturbances. Moreover, the exoskeleton p...
متن کاملRobot-assisted Therapy in Stroke Rehabilitation
Research into rehabilitation robotics has grown rapidly and the number of therapeutic rehabilitation robots has expanded dramatically during the last two decades. Robotic rehabilitation therapy can deliver high-dosage and high-intensity training, making it useful for patients with motor disorders caused by stroke or spinal cord disease. Robotic devices used for motor rehabilitation include end-...
متن کاملSimultaneous and Continuous Estimation of Shoulder and Elbow Kinematics from Surface EMG Signals
In this paper, we present a simultaneous and continuous kinematics estimation method for multiple DoFs across shoulder and elbow joint. Although simultaneous and continuous kinematics estimation from surface electromyography (EMG) is a feasible way to achieve natural and intuitive human-machine interaction, few works investigated multi-DoF estimation across the significant joints of upper limb,...
متن کاملDesign and Interaction Control of a New Bilateral Upper-Limb Rehabilitation Device
This paper proposed a bilateral upper-limb rehabilitation device (BULReD) with two degrees of freedom (DOFs). The BULReD is portable for both hospital and home environment, easy to use for therapists and patients, and safer with respect to upper-limb robotic exoskeletons. It was implemented to be able to conduct both passive and interactive training, based on system kinematics and dynamics, as ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2016 شماره
صفحات -
تاریخ انتشار 2016