Hypoxia-augmented constriction of deep femoral artery mediated by inhibition of eNOS in smooth muscle.
نویسندگان
چکیده
In contrast to the conventional belief that systemic arteries dilate under hypoxia, we found that α-adrenergic contraction of rat deep femoral artery (DFA) is largely augmented by hypoxia (HVC(DFA)) while hypoxia (3% Po(2)) alone had no effect. HVC(DFA) was consistently observed in both endothelium-intact and -denuded vessels with partial pretone by phenylephrine (PhE) or by other conditions (e.g., K(+) channel blocker). Patch-clamp study showed no change in the membrane conductance of DFA myocytes by hypoxia. The RhoA-kinase inhibitor Y27632 attenuated HVC(DFA). The nitric oxide synthase inhibitor [nitro-L-arginine methyl ester (L-NAME)] and soluble guanylate cyclase inhibitor [oxadiazole quinoxalin (ODQ)] strongly augmented the PhE-pretone, while neither of the agents had effect without pretone. NADPH oxidase type 4 (NOX4) inhibitors (diphenylene iodonium and plumbagin) also potentiated PhE-pretone, which was reversed by NO donor. No additive HVC(DFA) was observed under the pretreatment with L-NAME, ODQ, or plumbagin. Western blot and immunohistochemistry analysis showed that both NOX4 and endothelial nitric oxide synthase (eNOS) are expressed in smooth muscle layer of DFA. Various mitochondria inhibitors (rotenone, myxothiazol, and cyanide) prevented HVC(DFA). From the pharmacological data, as a mechanism for HVC(DFA), we suggest hypoxic inhibition of eNOS in myocytes. The putative role of NOX4 and mitochondria requires further investigation. The HVC(DFA) may prevent imbalance between cardiac output and skeletal blood flow under emergent hypoxia combined with increased sympathetic tone.
منابع مشابه
Role of muscular eNOS in skeletal arteries: Endothelium-independent hypoxic vasoconstriction of the femoral artery is impaired in eNOS-deficient mice.
We previously reported that hypoxia augments α-adrenergic contraction (hypoxic vasoconstriction, HVC) of skeletal arteries in rats. The underlying mechanism may involve hypoxic inhibition of endothelial nitric oxide synthase (eNOS) expressed in skeletal arterial myocytes (16). To further explore the novel role of muscular eNOS in the skeletal artery, we compared HVC in femoral arteries (FAs) fr...
متن کاملMitochondrial transplantation attenuates hypoxic pulmonary vasoconstriction
Hypoxia triggers pulmonary vasoconstriction, however induces relaxation of systemic arteries such as femoral arteries. Mitochondria are functionally and structurally heterogeneous between different cell types. The aim of this study was to reveal whether mitochondrial heterogeneity controls the distinct responses of pulmonary versus systemic artery smooth muscle cells to hypoxia. Intact mitochon...
متن کاملPULMONARY VASCULATURE Acute hypoxia simultaneously induces the expression of gp91 and endothelial nitric oxide synthase in the porcine pulmonary artery
Background: The effect of hypoxia on the formation of superoxide (O2 ), the expression of gp91 and endothelial NO synthase (eNOS) were studied in pig intact pulmonary artery (PA) segments and PA vascular smooth muscle cells (PAVSMCs) and PA endothelial cells (PAECs). Methods: Segments and cells were incubated under hypoxic conditions for 2 hours (with or without enzyme inhibitors) and the forma...
متن کاملAlterations in a redox oxygen sensing mechanism in chronic hypoxia.
The mechanism of acute hypoxic pulmonary vasoconstriction (HPV) may involve the inhibition of several voltage-gated K+ channels in pulmonary artery smooth muscle cells. Changes in PO2 can either be sensed directly by the channel(s) or be transmitted to the channel via a redox-based effector mechanism. In control lungs, hypoxia and rotenone acutely decrease production of activated oxygen species...
متن کاملBeta-adrenoceptor-mediated responsiveness of human internal mammary artery
The internal mammary artery (IMA) is currently the preferred conduit for myocardial revascularization. However, pre-operative vasospasm and a hypoperfusion state during maximal exercise may limit its use as a bypass graft. The mechanism of spasm has not been clearly defined. Since β-adrenoceptor activation plays a major role in vasorelaxation, the present study was carried out to investigate th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 304 1 شماره
صفحات -
تاریخ انتشار 2013