Squeezing Axons Out of the Gray Matter A Role for Slit and Semaphorin Proteins from Midline and Ventral Spinal Cord
نویسندگان
چکیده
Commissural axons cross the nervous system midline and then turn to grow alongside it, neither recrossing nor projecting back into ventral regions. In Drosophila, the midline repellent Slit prevents recrossing: axons cross once because they are initially unresponsive to Slit, becoming responsive only upon crossing. We show that commissural axons in mammals similarly acquire responsiveness to a midline repellent activity upon crossing. Remarkably, they also become responsive to a repellent activity from ventral spinal cord, helping explain why they never reenter that region. Several Slit and Semaphorin proteins, expressed in midline and/or ventral tissues, mimic these repellent activities, and midline guidance defects are observed in mice lacking neuropilin-2, a Semaphorin receptor. Thus, Slit and Semaphorin repellents from midline and nonmidline tissues may help prevent crossing axons from reentering gray matter, squeezing them into surrounding fiber tracts.
منابع مشابه
Conserved Roles for Slit and Robo Proteins in Midline Commissural Axon Guidance
In Drosophila, Slit at the midline activates Robo receptors on commissural axons, thereby repelling them out of the midline into distinct longitudinal tracts on the contralateral side of the central nervous system. In the vertebrate spinal cord, Robo1 and Robo2 are expressed by commissural neurons, whereas all three Slit homologs are expressed at the ventral midline. Previous analysis of Slit1;...
متن کاملCollaborative and specialized functions of Robo1 and Robo2 in spinal commissural axon guidance.
Commissural neurons project axons across the floor plate at the spinal cord ventral midline. After crossing, commissural axons turn rostrally, sort into distinct positions within the ventrolateral funiculus, and never reenter the floor plate. Robo1 and Robo2 are receptors for the midline repellents Slit1-Slit3, and upregulation of Robos in post-crossing axons allows expulsion from the floor pla...
متن کاملEvidence for a Role of srGAP3 in the Positioning of Commissural Axons within the Ventrolateral Funiculus of the Mouse Spinal Cord
Slit-Robo signaling guides commissural axons away from the floor-plate of the spinal cord and into the longitudinal axis after crossing the midline. In this study we have evaluated the role of the Slit-Robo GTPase activating protein 3 (srGAP3) in commissural axon guidance using a knockout (KO) mouse model. Co-immunoprecipitation experiments confirmed that srGAP3 interacts with the Slit receptor...
متن کاملNetrin1-DCC-Mediated Attraction Guides Post-Crossing Commissural Axons in the Hindbrain.
UNLABELLED Commissural axons grow along precise trajectories that are guided by several cues secreted from the ventral midline. After initial attraction to the floor plate using Netrin1 activation of its main attractive receptor, DCC (deleted in colorectal cancer), axons cross the ventral midline, and many turn to grow longitudinally on the contralateral side. After crossing the midline, axons ...
متن کاملCommissural axon navigation: Control of midline crossing in the vertebrate spinal cord by the semaphorin 3B signaling
The mechanisms governing the navigation of commissural axons during embryonic development have been extensively investigated in the past years, often using the drosophila ventral nerve cord and the spinal cord as model systems. Similarities but also specificities in the general strategies, the molecular signals as well as in the regulatory pathways controlling the response of commissural axons ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 102 شماره
صفحات -
تاریخ انتشار 2000