Homer proteins and InsP(3) receptors co-localise in the longitudinal sarcoplasmic reticulum of skeletal muscle fibres.
نویسندگان
چکیده
Striated muscle represents one of the best models for studies on Ca(2+) signalling. However, although much is known on the localisation and molecular interactions of the ryanodine receptors (RyRs), far less is known on the localisation and on the molecular interactions of the inositol trisphosphate receptors (InsP(3)Rs) in striated muscle cells. Recently, members of the Homer protein family have been shown to cluster type 1 metabotropic glutamate receptors (mGluR1) in the plasma membrane and to interact with InsP(3)R in the endoplasmic reticulum of neurons. Thus, these scaffolding proteins are good candidates for organising plasma membrane receptors and intracellular effector proteins in signalosomes involved in intracellular Ca(2+) signalling. Homer proteins are also expressed in skeletal muscle, and the type 1 ryanodine receptor (RyR1) contains a specific Homer-binding motif. We report here on the relative sub-cellular localisation of InsP(3)Rs and Homer proteins in skeletal muscle cells with respect to the localisation of RyRs. Immunofluorescence analysis showed that both Homer and InsP(3)R proteins present a staining pattern indicative of a localisation at the Z-line, clearly distinct from that of RyR1. Consistent herewith, in sub-cellular fractionation experiments, Homer proteins and InsP(3)R were both found in the fractions enriched in longitudinal sarcoplasmic reticulum (LSR) but not in fractions of terminal cisternae that are enriched in RyRs. Thus, in skeletal muscle, Homer proteins may play a role in the organisation of a second Ca(2+) signalling compartment containing the InsP(3)R, but are apparently not involved in the organisation of RyRs at triads.
منابع مشابه
Transition of Homer isoforms during skeletal muscle regeneration.
Homer represents a new and diversified family of proteins that includes several isoforms, Homer 1, 2, and 3; some of these isoforms have been reported to be present in striated muscles. In this study, the presence of Homer isoforms 1a, 1b/c/d, 2b, and 3 was thoroughly investigated in rat skeletal muscles under resting conditions. Transition in Homer isoforms compositon was studied under experim...
متن کاملReduced expression of sarcalumenin and related Ca2+ -regulatory proteins in aged rat skeletal muscle.
In skeletal muscle, Ca(2+)-cycling through the sarcoplasm regulates the excitation-contraction-relaxation cycle. Since uncoupling between sarcolemmal excitation and fibre contraction may play a key role in the functional decline of aged muscle, this study has evaluated the expression levels of key Ca(2+)-handling proteins in senescent preparations using immunoblotting and confocal microscopy. S...
متن کاملIntroduction to the functional anatomy of the mammalian motor unit.
The main function of skeletal muscles is production of force in a controlled manner. Force is generated by highly specialized cells, the muscle fibres, by the interaction between their two main constituents, i.e. myosin and actin. In mammalian skeletal muscle fibres the actin and myosin molecules are neatly aligned to form sarcomeres. Several such units are connected along the longitudinal axis...
متن کاملChanges in Ca-Regulatory Muscle Membrane Proteins During the Chronic Low-Frequency Stimulation Induced Fast-To-Slow Transition Process
Electro-stimulation has a profound effect on the abundance and isoform expression pattern of many contractile and regulatory elements of skeletal muscle fibres. This review summarizes the effects of chronic low-frequency stimulation on Ca-regulatory membrane proteins involved in excitation-contraction coupling and muscle relaxation. Isoform switching and/or changes in the abundance of marker pr...
متن کاملTRPC3-interacting triadic proteins in skeletal muscle.
The expression of TRPC3 (canonical-type transient receptor potential cation channel type 3) is tightly regulated during skeletal muscle cell differentiation, and a functional interaction between TRPC3 and RyR1 [(ryanodine receptor type 1), an SR (sarcoplasmic reticulum) Ca2+-release channel] regulates the gain of SR Ca2+ release during EC (excitation-contraction) coupling. However, it has not b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell calcium
دوره 32 4 شماره
صفحات -
تاریخ انتشار 2002