Slit and Robo Control Cardiac Cell Polarity and Morphogenesis
نویسندگان
چکیده
Basic aspects of heart morphogenesis involving migration, cell polarization, tissue alignment, and lumen formation may be conserved between Drosophila and humans, but little is known about the mechanisms that orchestrate the assembly of the heart tube in either organism. The extracellular-matrix molecule Slit and its Robo-family receptors are conserved regulators of axonal guidance. Here, we report a novel role of the Drosophila slit, robo, and robo2 genes in heart morphogenesis. Slit and Robo proteins specifically accumulate at the dorsal midline between the bilateral myocardial progenitors forming a linear tube. Manipulation of Slit localization or its overexpression causes disruption in heart tube alignment and assembly, and slit-deficient hearts show disruptions in cell-polarity marker localization within the myocardium. Similar phenotypes are observed when Robo and Robo2 are manipulated. Rescue experiments suggest that Slit is secreted from the myocardial progenitors and that Robo and Robo2 act in myocardial and pericardial cells, respectively. Genetic interactions suggest a cardiac morphogenesis network involving Slit/Robo, cell-polarity proteins, and other membrane-associated proteins. We conclude that Slit and Robo proteins contribute significantly to Drosophila heart morphogenesis by guiding heart cell alignment and adhesion and/or by inhibiting cell mixing between the bilateral compartments of heart cell progenitors and ensuring proper polarity of the myocardial epithelium.
منابع مشابه
The first “Slit” is the deepest: the secret to a hollow heart
Tubular organs are essential for life, but lumen formation in nonepithelial tissues such as the vascular system or heart is poorly understood. Two studies in this issue (Medioni, C., M. Astier, M. Zmojdzian, K. Jagla, and M. Sémériva. 2008. J. Cell Biol. 182:249-261; Santiago-Martínez, E., N.H. Soplop, R. Patel, and S.G. Kramer. 2008. J. Cell Biol. 182:241-248) reveal unexpected roles for the S...
متن کاملLateral positioning at the dorsal midline: Slit and Roundabout receptors guide Drosophila heart cell migration.
Heart morphogenesis requires the coordinated regulation of cell movements and cell-cell interactions between distinct populations of cardiac precursor cells. Little is known about the mechanisms that organize cardiac cells into this complex structure. In this study, we analyzed the role of Slit, an extracellular matrix protein and its transmembrane receptors Roundabout (Robo) and Roundabout2 (R...
متن کاملMoving away from the midline: new developments for Slit and Robo.
In most tissues, the precise control of cell migration and cell-cell interaction is of paramount importance to the development of a functional structure. Several families of secreted molecules have been implicated in regulating these aspects of development, including the Slits and their Robo receptors. These proteins have well described roles in axon guidance but by influencing cell polarity an...
متن کاملRepulsion by Slit and Roundabout prevents Shotgun/E-cadherin–mediated cell adhesion during Drosophila heart tube lumen formation
During Drosophila melanogaster heart development, a lumen forms between apical surfaces of contralateral cardioblasts (CBs). We show that Slit and its receptor Roundabout (Robo) are required at CB apical domains for lumen formation. Mislocalization of Slit outside the apical domain causes ectopic lumen formation and the mislocalization of cell junction proteins, E-cadherin (E-Cad) and Enabled, ...
متن کاملThe SLIT-ROBO pathway: a regulator of cell function with implications for the reproductive system.
The secreted SLIT glycoproteins and their Roundabout (ROBO) receptors were originally identified as important axon guidance molecules. They function as a repulsive cue with an evolutionarily conserved role in preventing axons from migrating to inappropriate locations during the assembly of the nervous system. In addition the SLIT-ROBO interaction is involved in the regulation of cell migration,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 15 شماره
صفحات -
تاریخ انتشار 2005