Second-Order Gauge Invariant Cosmological Perturbation Theory Einstein Equations in Terms of Gauge Invariant Variables

نویسندگان

  • Kouji Nakamura
  • K. Nakamura
چکیده

Following the general framework of the gauge invariant perturbation theory developed in the papers [K. Nakamura, Prog. Theor. Phys. 110 (2003), 723; ibid. 113 (2005), 481], we formulate second-order gauge invariant cosmological perturbation theory in a four-dimensional homogeneous isotropic universe. We consider perturbations both in the universe dominated by a single perfect fluid and in that dominated by a single scalar field. We derive all the components of the Einstein equations in the case that the first-order vector and tensor modes are negligible. All equations are derived in terms of gauge invariant variables without any gauge fixing. These equations imply that second-order vector and tensor modes may be generated due to the mode-mode coupling of the linear-order scalar perturbations. We also briefly discuss the main progress of this work through comparison with previous works.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inclusion of the first-order vector- and tensor-modes in the second-order gauge-invariant cosmological perturbation theory

Gauge-invariant treatments of the second-order cosmological perturbation in a four dimensional homogeneous isotropic universe are formulated without any gauge fixing. We have derived the Einstein equations in the case of the single perfect fluid without ignoring any modes. These equations imply that any types of mode-coupling arise due to the second-order effects of the Einstein equations. The ...

متن کامل

Consistensy of Equations in the Second-order Gauge-invariant Cosmological Perturbation Theory

Along the general framework of the gauge invariant perturbation theory developed in the papers [K. Nakamura, Prog. Theor. Phys. 110 (2003), 723; ibid, 113 (2005), 481.], we rederive the second-order Einstein equations on four-dimensional homogeneous isotropic background universe in gauge-invariant manner without ignoring any mode of perturbations. We consider the perturbations both in the unive...

متن کامل

Consistency of Equations in the Second-order Gauge-invariant Cosmological Perturbation Theory

Along the general framework of the gauge-invariant perturbation theory developed in the papers [K. Nakamura, Prog. Theor. Phys. 110 (2003), 723; ibid, 113 (2005), 481.], we re-derive the second-order Einstein equations on four-dimensional homogeneous isotropic background universe in gauge-invariant manner without ignoring any mode of perturbations. We consider the perturbations both in the univ...

متن کامل

Perturbations of Matter Fields in the Second-order Gauge-invariant Cosmological Perturbation Theory

Some formulae for the perturbations of the matter fields are summarized within the framework of the second-order gauge-invariant cosmological perturbation theory in a four dimensional homogeneous isotropic universe, which is developed in the papers [K. Nakamura, Prog. Theor. Phys. 117 (2007), 17.]. We derive the formulae for the perturbations of the energy momentum tensors and equations of moti...

متن کامل

cosmological density fluctuations and gravity waves: a covariant approach to gauge-invariant non-linear perturbation theory

We present a new approach to gauge-invariant cosmological perturbations at second order, which is also covariant. We examine two cases in particular for a dust Friedman-Lemâıtre-RobertsonWalker model of any curvature: we investigate gravity waves generated from clustering matter, that is, induced tensor modes from scalar modes; and we discuss the generation of density fluctuations induced by gr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004