A comparative AFM study of carbon alloyed Mo–Se–C and W–S–C films for tribological applications
نویسندگان
چکیده
Transition metal dichalcogenides have a layered structure and are therefore promising self-lubricating films. They can be considered as potential substitutes for carbon based films in various environmental conditions. In this work, a comparative atomic force microscopy study of co-sputtered Mo–Se–C and W–S–C films is performed to evaluate their nanotribological performances. Both films are alloyed with carbon. The microstructural features of these films are characterised using scanning electron microscopy and X-ray diffraction. The hardness and elastic modulus of these films are measured employing nanoindentation. The topography, friction forces and pull off forces of the films are evaluated by means of atomic force microscopy and force spectroscopy. The results show that the roughness parameters of Mo–Se–C films are lower than that of W–S–C films at high carbon content whereas the reverse is true at low carbon content. Adhesion forces of these films based on pull-off force measurements show that Mo–Se–C films have higher pull off forces than W–S–C films. An atomic force microscopy technique is developed to estimate microscopic values of friction coefficients and to characterise the nature of surface changes due to nanotribological experiments. The friction coefficient of Mo–Se–C films is higher than that of W–S–C films at low carbon content and these friction coefficients are comparable at high carbon content.
منابع مشابه
Structural characteristics and tribological properties of TiAlCr(Si)CN nanocomposite films coated on the SPK 1.2080 tool steel using PVD technique
In the present work, structural characteristics and tribological properties of the Ti-Al-Cr-(Si)-C-N nanocomposite films coated on the SPK 1.2080 tool steel byPVD technique have been investigated. The PVD coating process was carried out using Ti (Si) Al and CrAl cathodes at 150 A current, 40 V bias and (Ar)0.1(CH4)0.45(N2)0.45 gas mixture for 50 min. Evaluations were conducted by OM, FESEM, AFM...
متن کاملStructural, Electrical and Optical Properties of Molybdenum Oxide Thin Films Prepared by Post-annealing of Mo Thin Films
Molybdenum thin films with 50 and 150 nm thicknesses were deposited on silicon substrates, using DC magnetron sputtering system, then post-annealed at different temperatures (200, 325, 450, 575 and 700°C) with flow oxygen at 200 sccm (standard Cubic centimeter per minute). The crystallographic structure of the films was obtained by means of x-ray diffraction (XRD) analysis. An atomic force micr...
متن کاملStructural, Electrical and Optical Properties of Molybdenum Oxide Thin Films Prepared by Post-annealing of Mo Thin Films
Molybdenum thin films with 50 and 150 nm thicknesses were deposited on silicon substrates, using DC magnetron sputtering system, then post-annealed at different temperatures (200, 325, 450, 575 and 700°C) with flow oxygen at 200 sccm (standard Cubic centimeter per minute). The crystallographic structure of the films was obtained by means of x-ray diffraction (XRD) analysis. An atomic force micr...
متن کاملDelineation of enriched zones of Mo, Cu and Re by concentration-volume fractal model in Nowchun Mo-Cu porphyry deposit, SE Iran
The purpose of this study is to identify the enriched zones of Cu, Mo and Re in Nowchun Mo-Cu porphyry deposit (SE Iran) based on subsurface data and using of concentration–volume (C–V) fractal model. The C-V model illustrates four and five geochemical zones based on Mo and Cu distributions respectively and there are three geochemical populations for Re. The main mineralization for Mo, Cu and R...
متن کاملMetal carbide/amorphous C-based nanocomposite coatings for tribological applications
This paper tries to assess the factors governing the tribological behaviour of different nanocomposites films composed by metallic carbides (MeC) mixed with amorphous carbon (a-C). Different series of MeC/a-C coatings (with Me: Ti(B) and W) were prepared by magnetron sputtering technique varying the power applied to the graphite target in order to tailor the carbon content into the films. A dee...
متن کامل